Tobias Kappé

Cornell University

Programming Languages Seminar, TU Delft

Joint work with. ..

Steffen Smolka Nate Foster Justin Hsu Dexter Kozen Alexandra Silva

Y \F‘

Published @ POPL 2020; see arxiv.org/abs/1907.05920.

Tobias Kappé Guarded Kleene Algebra with Tests Programming Languages Seminar, TU Delft 1]18

https://arxiv.org/abs/1907.05920

while aand b do
: e:
end
- whileado
; f:
while aand b do

end

- whileaandbdo
e whileado
- end if b then
~ whileado CHE.
: f; § § else
whileaandbdo f;

e ~ end
end ; ; end

. whileado
if b then

while a and b do
e;
. else

end
while @ do |
~ end

f!
: d b do :
aan end

[~

end

Contributions:

= Nearly linear time decision procedure for equivalence.’

"For fixed number of tests.

Contributions:

= Nearly linear time decision procedure for equivalence.’
= Axiomatization of uninterpreted program equivalence.

"For fixed number of tests.

Introduction

Contributions:
Nearly linear time decision procedure for equivalence."
Axiomatization of uninterpreted program equivalence.
Kleene theorem for uninterpreted programs.

"For fixed number of tests.

Tobias Kappé Guarded Kleene Algebra with Tests Programming Languages Seminar, TU Delft 3|18

ab:=teT|la+blabla|0]1

ef:=alpcX|ef|letaf|e®

ab:=teT|la+blabla|0]1

e

ef:=alpcX|ef|letaf|e®

ab:=teT|la+blabla|0]1

=

ef:=alpcX|ef|letaf|e®

ab:=teT|la+blabla|0]1

ef:=alpcX|ef|letaf|e®

ab:=teT|la+blabla|0]1

e

ef:=alpcX|ef|letaf|e®

ab:=teT|la+blabla|0]1

e

ef:=alpcX|ef|letaf|e®

ab:=teT|la+blabla|0]1

ef:=alpcX|ef|letaf|e®

-

ab:=teT|la+blabla|0]1

ef:=alpcX|ef|letaf|e®

o

ab:=teT|la+blabla|0]1

ef:=alpcX|ef|letaf|e®

[rp——

ab:=teT|la+blabla|0]1

ef:=alpcX|ef|letaf|e®

 whileado
: if b then

while a and b do
e,
end
while a do
f;
while a and b do

end

sat : T — 2States

sat : T — 2States

eval : £ — States — 251ates

sat : T — 2States
eval : £ — States — 251ates

i = (sat, eval)

sat: T — 28tates
eval : £ — States — 251
i = (sat, eval)

Ri[e] : States — 25tates

Atoms =27 GS(Z, T) = Atoms - (£ - Atoms)*

Atoms = 27 GS(Z, T) = Atoms - (L - Atoms)*
_ . (n) _ (%) — (n)
LoK ={wax:wxe L, ax € K} LM =[o. 0oL L =L
n times neN

e [e]

teT {aweAtoms:te o}
a+b [aJu(b]

ab [a] N [b]

a Atoms \ [a]

peX {apP:« p € Atoms}
e+af [a]o[e] U [a] o [f]
ef le] < [f]

e® ([a]o[e])™ o[a]

[[e]] = [[f]] <~ Vi. 3%,-[[e]] = Ri[[f]]

Decision procedure

Theorem
le] = [f] < Vi. Ri[e] = R[f]

How to check [e] = [f]:

Create automata that accept [e]] and [f] [Thompson 1968]
Check automata for bisimilarity [Hopcroft and Karp 1971; Tarjan 1975]

Tobias Kappé Guarded Kleene Algebra with Tests Programming Languages Seminar, TU Delft 9|18

Decision procedure

Theorem
le] =[f] < Vi.Ri[e] = Ri[f]

How to check [e] = [f]:
Create automata that accept [e]] and [f] [Thompson 1968]
Check automata for bisimilarity [Hopcroft and Karp 1971; Tarjan 1975]

Decidability

Tobias Kappé Guarded Kleene Algebra with Tests Programming Languages Seminar, TU Delft 9|18

et,e=e

et,e=e et+af=f+ze

efae=e ef+f=f+ze et,f=ae+,f

et,e=e et,f=f+ze et,f=ae+,f aa=0

et,e=e etaf=f+ze etaf=ae+,f 2aa=0 0e=0

et,e=e etaf=f+ze etaf=ae+,f 2aa=0 0e=0

if a then e else assert false =€ +,0

e+afEae+af1: aa=0 0e=0

I
I
P

if a then e else assert false=e+,0=ae +,0

et,e=e et+af=f+ze

et,e=e Ee+af5f+§e‘: et,f=ae+,f aa=0 0e=0

if a then e else assert false=e+,0=ae +,0
=0+zae

etae=e etaf=f+ze et+,f=ae+,f aa=0 '0e=0,

if a then e else assert false=e+,0=ae +,0
=0+zae
= Oe {7 ae

et,e=e et f=f+ze etaf=ae+,f laa=0, 0e=0

if a then e else assert false=e+,0=ae +,0
=0+zae
= Oe {7 ae
= aae +; ae

e+afEae+af1: aa=0 0e=0

I
I
P

if a then e else assert false=e+,0=ae +,0
=0+zae
= Oe {7 ae
= aae +; ae
= ae +; ae

et,e=e et,f=f+ze

'et,e=e! et f=f+ze etaf=ae+,f 2aa=0 0e=0

if a then e else assert false=e+,0=ae +,0
=0+zae
= Oe {7 ae
= aae +; ae
= ae +; ae
= ae — assert a; e

e=fe+ag
e =flg

e=fe+ag
e =flg

Allows to derive 1 =11 je,,

assert true = while true do assert true

e=fe+ag f is productive

e =g

e=fe+ag f is productive

(@) — pal@)
esf(a)g e =ee'” +,1

e=fe+ag f is productive

e =flag

e=fe+ f is productive
ad P e@ = eel® 4, 1 (e +4 1) = (ae)®

e =flag

For every e, there exists a productive é such thate®) = &®)

e=fe+ f is productive
ad P e@ = eel® 4, 1 (e +4 1) = (ae)®

e =g

For every e, there exists a productive é such thate®) = &®)

e@® =el@a e® = (ae)® e@e®) = g(b)

Ife =1, then [e] = [f].

How about the converse?

IEECiSTIEOUERos M| A StAland & Ay wilh

Ife =1, then [e] = [f]. e = S(A)

If A~ A’, then S(A) = S(A’).

How about the converse?

IEECiSTIEOUERos M| A StAland & Ay wilh

Ife =1, then [e] = [f]. e = S(A)

If A~ A’, then S(A) = S(A’).

[e] =[] = L(Ae) = L(Ap)
= Ae ~ A
— S(Aes) = S(Af)
= e=f

Axiomatization/soundness & completeness

How about the converse?

Theorem (Soundness) A S(A) and e — Ae with

Ife =1, then [e] = [f]. e = S(Ae)

If A~ A’, then S(A) = S(A’).
Theorem (Completeness)

If [e] = [f], thene =1{. [e] =[f] = L(Ae) = L(A)
— Ao~ A
= S(As) = S(A)
= e=f

Tobias Kappé Guarded Kleene Algebra with Tests Programming Languages Seminar, TU Delft 13|18

Axiomatization/soundness & completeness

How about the converse?
Theorem (Soundness) A S(A) and e — Ae with

Ife =1, then [e] = [f]. e = S(Ae)

If A~ A’, then S(A) = S(A’).
Theorem (Completeness)

If [e] = [f], thene = {. [e] =[f] = L(Ae) =L(A)
= Ae ~ A
= S(Ae) = S(A)

Axiomatization — o=t

Tobias Kappé Guarded Kleene Algebra with Tests Programming Languages Seminar, TU Delft 13|18

acovo Bp

acovo Bpyag

x<e . Bpygo € L(A)

x<e . Bpygo € L(A)

(X,8: X — (24 £ x X)Ams)

Not described by an expression e:

&1/ Pot

See [Kozen and Tseng 2008].

n
T
u

=e
<»

n
T
u

— o~ —~ —

Atoms -2+ X x X
| |
[)

—

— o~ —~ —

Atoms -2+ X x X
| |
[)

—

A Kleene theorem/ main result

Theorem

Let L be a language of guarded strings. The following are equivalent:
L = [e] for somee.
L is accepted by a well-nested and finite automaton A.

Tobias Kappé Guarded Kleene Algebra with Tests Programming Languages Seminar, TU Delft 17|18

A Kleene theorem/ main result

Theorem

Let L be a language of guarded strings. The following are equivalent:
L = [e] for somee.
L is accepted by a well-nested and finite automaton A.

Both conversions are constructive.
Automata are linear in size of expression.
Side-conditions for completeness also hold.

Tobias Kappé Guarded Kleene Algebra with Tests Programming Languages Seminar, TU Delft 17|18

A Kleene theorem/ main result

Theorem

Let L be a language of guarded strings. The following are equivalent:
L = [e] for somee.
L is accepted by a well-nested and finite automaton A.

Both conversions are constructive.
Kleene

Automata are linear in size of expression.

Side-conditions for completeness also hold. Theorem

Tobias Kappé Guarded Kleene Algebra with Tests Programming Languages Seminar, TU Delft 17|18

Further work

Which theories could we embed while keeping decidability?
Are more parameterized semantics possible?
How do we recover a small program from an automaton?

Which extensions of the syntax would be interesting?

Tobias Kappé Guarded Kleene Algebra with Tests Programming Languages Seminar, TU Delft 1818

kap.pe/slides

arxiv.org/abs/1907.05920

https://kap.pe/slides
https://arxiv.org/abs/1907.05920

	Joint work with…
	Introduction
	Syntax
	Semantics
	relational
	uninterpreted

	Decision procedure
	Axiomatization
	without loops
	with loops
	soundness & completeness

	A Kleene theorem
	automata model
	main result

	Further work

