Guarded Kleene Algebra with Tests

Verification of Uninterpreted Programs in Nearly Linear Time

Tobias Kappé

Cornell University

Programming Languages Seminar, TU Delft

Joint work with...

Published @ POPL 2020; see arxiv.org/abs/1907.05920.

```
while a and b do
   e;
end
while a do
   while a and b do
      e;
   end
end
```

```
while a and b do
end
while a do
   while a and b do
      e;
   end
end
```

```
while a do
   if b then
   e;
   else
   f;
   end
end
```

```
while a and b do
end
while a do
   while a and b do
      e;
   end
end
```

```
?
```

```
while a do
   if b then
    e;
   else
    f;
   end
end
```

Contributions:

Nearly linear time decision procedure for equivalence.¹

¹For fixed number of tests.

Contributions:

- Nearly linear time decision procedure for equivalence.¹
- Axiomatization of uninterpreted program equivalence.

¹For fixed number of tests.

Contributions:

- Nearly linear time decision procedure for equivalence.¹
- Axiomatization of uninterpreted program equivalence.
- Kleene theorem for uninterpreted programs.

¹For fixed number of tests.

a, **b** ::=
$$t \in T | \mathbf{a} + \mathbf{b} | \mathbf{ab} | \overline{\mathbf{a}} | 0 | 1$$

$$e, f := a \mid p \in \Sigma \mid ef \mid e +_a f \mid e^{(a)}$$

$$\mathbf{a}, \mathbf{b} ::= t \in T \mid \mathbf{a} + \mathbf{b} \mid \mathbf{ab} \mid \overline{\mathbf{a}} \mid 0 \mid 1$$

$$e, f := a \mid p \in \Sigma \mid ef \mid e +_a f \mid e^{(a)}$$

$$\mathbf{a}, \mathbf{b} ::= t \in T \mid \mathbf{a} + \mathbf{b} \mid \mathbf{ab} \mid \overline{\mathbf{a}} \mid 0 \mid 1$$

$$e, f := a \mid p \in \Sigma \mid ef \mid e +_a f \mid e^{(a)}$$

$$\mathbf{a}, \mathbf{b} ::= t \in T \mid \mathbf{a} + \mathbf{b} \mid \mathbf{ab} \mid \overline{\mathbf{a}} \mid 0 \mid 1$$

$$e, f := a \mid p \in \Sigma \mid ef \mid e +_a f \mid e^{(a)}$$

$$\mathbf{a},\mathbf{b} ::= t \in T \mid \mathbf{a} + \mathbf{b} \mid \mathbf{ab} \mid \overline{\mathbf{a}} \mid \mathbf{0} \mid \mathbf{1}$$

$$e, f := a \mid p \in \Sigma \mid ef \mid e +_a f \mid e^{(a)}$$

$$\mathbf{a},\mathbf{b} ::= t \in T \mid \mathbf{a} + \mathbf{b} \mid \mathbf{ab} \mid \overline{\mathbf{a}} \mid 0 \mid 1$$

$$e, f := a \mid p \in \Sigma \mid ef \mid e +_a f \mid e^{(a)}$$

a, **b** ::=
$$t \in T | \mathbf{a} + \mathbf{b} | \mathbf{ab} | \overline{\mathbf{a}} | 0 | 1$$

$$e, f := a \mid p \in \Sigma \mid ef \mid e +_a f \mid e^{(a)}$$

assert a

a, **b** ::=
$$t \in T | \mathbf{a} + \mathbf{b} | \mathbf{ab} | \overline{\mathbf{a}} | 0 | 1$$

$$\mathbf{e},\mathbf{f}::=\mathbf{a}\mid p\in\Sigma\mid\mathbf{ef}\mid\mathbf{e}+_{\mathbf{a}}\mathbf{f}\mid\mathbf{e^{(a)}}$$

$$\mathbf{e};\mathbf{f}$$

a, **b** ::=
$$t \in T | \mathbf{a} + \mathbf{b} | \mathbf{ab} | \overline{\mathbf{a}} | 0 | 1$$

$$e, f := a \mid p \in \Sigma \mid ef \mid e +_a f \mid e^{(a)}$$

if a then e else f

a, **b** ::=
$$t \in T | \mathbf{a} + \mathbf{b} | \mathbf{ab} | \overline{\mathbf{a}} | 0 | 1$$

$$e, f := a \mid p \in \Sigma \mid ef \mid e +_a f \mid e^{(a)}$$

while a do e

```
while a do
      if b then
             e:
      else
      end
end
  \psi
(\mathbf{e} +_{\mathbf{b}} \mathbf{f})^{(\mathbf{a})}
```

```
while a and b do
    e:
end
while a do
    while a and b do
        e:
    end
end
  \psi \\ e^{(ab)}(fe^{(ab)})^{(a)}
```

 $\textit{sat}: \textit{T} \rightarrow 2^{\textit{States}}$

$$\textit{sat}: \textit{T} \rightarrow 2^{\textit{States}}$$

$$\textit{eval}: \Sigma \rightarrow \textit{States} \rightarrow 2^{\textit{States}}$$

$$sat: T o 2^{States}$$
 $eval: \Sigma o States o 2^{States}$ $i = (sat, eval)$

$$egin{aligned} & \textit{sat}: \textit{T}
ightarrow 2^{\textit{States}} \ & \textit{eval}: \Sigma
ightarrow \textit{States}
ightarrow 2^{\textit{States}} \ & \textit{i} = (\textit{sat}, \textit{eval}) \ & \Re_i \llbracket \mathbf{e} \rrbracket: \textit{States}
ightarrow 2^{\textit{States}} \end{aligned}$$

Semantics / uninterpreted

$$Atoms = 2^T$$

$$\mathsf{GS}(\Sigma, T) = \mathsf{Atoms} \cdot (\Sigma \cdot \mathsf{Atoms})^*$$

Semantics / uninterpreted

$$\textit{Atoms} = 2^{\textit{T}} \qquad \qquad \textit{GS}(\Sigma, \textit{T}) = \textit{Atoms} \cdot (\Sigma \cdot \textit{Atoms})^*$$

$$L \diamond K = \{ w \alpha x : w \alpha \in L, \alpha x \in K \}$$
 $L^{(n)} = \underbrace{L \diamond \cdots \diamond L}_{n \text{ times}}$ $L^{(*)} = \bigcup_{n \in \mathbb{N}} L^{(n)}$

Semantics / uninterpreted

```
e
t \in T \quad \{\alpha \in Atoms : t \in \alpha\}
\mathbf{a} + \mathbf{b} [\mathbf{a}] \cup [\mathbf{b}]
ab [a] ∩ [b]
ā Atoms \ [a]
p \in \Sigma \quad \{\alpha p\beta : \alpha, \beta \in Atoms\}
e +_a f \quad [a] \diamond [e] \cup [\overline{a}] \diamond [f]
e^{(a)} ([a] \diamond [e])^{(*)} \diamond [\overline{a}]
```

Decision procedure

Theorem

$$\llbracket \mathbf{e} \rrbracket = \llbracket \mathbf{f} \rrbracket \iff \forall i. \ \mathcal{R}_i \llbracket \mathbf{e} \rrbracket = \mathcal{R}_i \llbracket \mathbf{f} \rrbracket$$

Decision procedure

Theorem

$$\llbracket \mathbf{e} \rrbracket = \llbracket \mathbf{f} \rrbracket \iff \forall i. \ \mathcal{R}_i \llbracket \mathbf{e} \rrbracket = \mathcal{R}_i \llbracket \mathbf{f} \rrbracket$$

How to check [e] = [f]:

- Create automata that accept [e] and [f]
- Check automata for bisimilarity

[Thompson 1968]

[Hopcroft and Karp 1971; Tarjan 1975]

Decision procedure

Theorem

$$\llbracket \mathbf{e} \rrbracket = \llbracket \mathbf{f} \rrbracket \iff \forall i. \ \mathcal{R}_i \llbracket \mathbf{e} \rrbracket = \mathcal{R}_i \llbracket \mathbf{f} \rrbracket$$

How to check [e] = [f]:

- Create automata that accept [e] and [f]
- Check automata for bisimilarity

[Thompson 1968]

[Hopcroft and Karp 1971; Tarjan 1975]

$$e +_a e \equiv e$$

$$e +_a e \equiv e$$
 $e +_a f \equiv f +_{\overline{a}} e$

$$e +_a e \equiv e$$
 $e +_a f \equiv f +_{\overline{a}} e$ $e +_a f \equiv ae +_a f$

$$e +_a e \equiv e$$
 $e +_a f \equiv f +_{\overline{a}} e$ $e +_a f \equiv ae +_a f$ $\overline{a}a \equiv 0$

$$e +_a e \equiv e$$

$$\mathbf{e} +_{\mathbf{a}} \mathbf{e} \equiv \mathbf{e} \qquad \mathbf{e} +_{\mathbf{a}} \mathbf{f} \equiv \mathbf{f} +_{\overline{\mathbf{a}}} \mathbf{e} \qquad \mathbf{e} +_{\mathbf{a}} \mathbf{f} \equiv \mathbf{a} \mathbf{e} +_{\mathbf{a}} \mathbf{f} \qquad \overline{\mathbf{a}} \mathbf{a} \equiv 0$$

$$e +_a t \equiv ae +_a$$

$$\overline{\mathbf{a}}\mathbf{a}\equiv 0$$

$$0\mathbf{e}\equiv 0$$

$$\mathbf{e} +_{\mathbf{a}} \mathbf{e} \equiv \mathbf{e} \qquad \mathbf{e} +_{\mathbf{a}} \mathbf{f} \equiv \mathbf{f} +_{\overline{\mathbf{a}}} \mathbf{e} \qquad \mathbf{e} +_{\mathbf{a}} \mathbf{f} \equiv \mathbf{a} \mathbf{e} +_{\mathbf{a}} \mathbf{f} \qquad \overline{\mathbf{a}} \mathbf{a} \equiv \mathbf{0} \qquad \mathbf{0} \mathbf{e} \equiv \mathbf{0}$$

Example

if a then e else assert false = $e +_a 0$

$$\mathbf{e} +_{\mathbf{a}} \mathbf{e} \equiv \mathbf{e} \qquad \mathbf{e} +_{\mathbf{a}} \mathbf{f} \equiv \mathbf{f} +_{\overline{\mathbf{a}}} \mathbf{e} \qquad \mathbf{e} +_{\mathbf{a}} \mathbf{f} \equiv \mathbf{a} \mathbf{e} +_{\mathbf{a}} \mathbf{f} \qquad \overline{\mathbf{a}} \mathbf{a} \equiv 0 \qquad 0 \mathbf{e} \equiv 0$$

Example

if a then e else assert false = $e +_a 0 \equiv ae +_a 0$

$$\mathbf{e} +_{\mathbf{a}} \mathbf{e} \equiv \mathbf{e}$$
 $\begin{vmatrix} \mathbf{e} +_{\mathbf{a}} \mathbf{f} \equiv \mathbf{f} +_{\overline{\mathbf{a}}} \mathbf{e} \end{vmatrix}$ $\mathbf{e} +_{\mathbf{a}} \mathbf{f} \equiv \mathbf{a} \mathbf{e} +_{\mathbf{a}} \mathbf{f}$ $\overline{\mathbf{a}} \mathbf{a} \equiv \mathbf{0}$ $\mathbf{0} \mathbf{e} \equiv \mathbf{0}$

if
$${\bf a}$$
 then ${\bf e}$ else assert false $={\bf e}+_{\bf a}0\equiv {\bf ae}+_{\bf a}0$ $\equiv 0+_{\overline{\bf a}}$ ae

$$\mathbf{e} +_{\mathbf{a}} \mathbf{e} \equiv \mathbf{e} \qquad \mathbf{e} +_{\mathbf{a}} \mathbf{f} \equiv \mathbf{f} +_{\overline{\mathbf{a}}} \mathbf{e} \qquad \mathbf{e} +_{\mathbf{a}} \mathbf{f} \equiv \mathbf{a} \mathbf{e} +_{\mathbf{a}} \mathbf{f} \qquad \overline{\mathbf{a}} \mathbf{a} \equiv \mathbf{0} \qquad \boxed{\mathbf{0} \mathbf{e} \equiv \mathbf{0}}$$

if a then e else assert false = e
$$+_a$$
 0 \equiv ae $+_a$ 0 \equiv 0 $+_{\overline{a}}$ ae \equiv 0e $+_{\overline{a}}$ ae

$$\mathbf{e} +_{\mathbf{a}} \mathbf{e} \equiv \mathbf{e}$$
 $\mathbf{e} +_{\mathbf{a}} \mathbf{f} \equiv \mathbf{f} +_{\overline{\mathbf{a}}} \mathbf{e}$ $\mathbf{e} +_{\mathbf{a}} \mathbf{f} \equiv \mathbf{a} \mathbf{e} +_{\mathbf{a}} \mathbf{f}$ $|\overline{\mathbf{a}} \mathbf{a} \equiv 0|$ $0\mathbf{e} \equiv 0$

if a then e else assert false = e +_a 0
$$\equiv$$
 ae +_a 0 \equiv 0 +_{\bar{a}} ae \equiv 0e +_{\bar{a}} ae \equiv \bar{a}ae +_{\bar{a}} ae

$$\mathbf{e} +_{\mathbf{a}} \mathbf{e} \equiv \mathbf{e} \qquad \mathbf{e} +_{\mathbf{a}} \mathbf{f} \equiv \mathbf{f} +_{\overline{\mathbf{a}}} \mathbf{e} \qquad \mathbf{e} +_{\mathbf{a}} \mathbf{f} \equiv \mathbf{a} \mathbf{e} +_{\mathbf{a}} \mathbf{f} \qquad \overline{\mathbf{a}} \mathbf{a} \equiv 0 \qquad 0 \mathbf{e} \equiv 0$$

```
if a then e else assert false = e +_a 0 \equiv ae +_a 0 \equiv 0 +_{\overline{a}} ae \equiv 0e +_{\overline{a}} ae \equiv \overline{a}ae +_{\overline{a}} ae \equiv ae +_{\overline{a}} ae
```

$$|\mathbf{e} +_{\mathbf{a}} \mathbf{e} \equiv \mathbf{e}|$$
 $\mathbf{e} +_{\mathbf{a}} \mathbf{f} \equiv \mathbf{f} +_{\overline{\mathbf{a}}} \mathbf{e}$ $\mathbf{e} +_{\mathbf{a}} \mathbf{f} \equiv \mathbf{a} \mathbf{e} +_{\mathbf{a}} \mathbf{f}$ $\overline{\mathbf{a}} \mathbf{a} \equiv \mathbf{0}$ $\mathbf{0} \mathbf{e} \equiv \mathbf{0}$

```
if a then e else assert false = e +_a 0 \equiv ae +_a 0

\equiv 0 +_{\overline{a}} ae

\equiv 0e +_{\overline{a}} ae

\equiv \overline{a}ae +_{\overline{a}} ae

\equiv ae +_{\overline{a}} ae

\equiv ae = assert a; e
```

$$\frac{\mathbf{e} \equiv \mathbf{f} \mathbf{e} +_{\mathbf{a}} \mathbf{g}}{\mathbf{e} \equiv \mathbf{f}^{(\mathbf{a})} \mathbf{g}}$$

$$\frac{e \equiv fe +_{\pmb{a}} g}{e \equiv f^{(\pmb{a})}g}$$

Allows to derive $1 \equiv 1^{(1)}$, i.e.,

assert true ≡ while true do assert true

$$\frac{e \equiv fe +_a g \qquad \text{f is productive}}{e \equiv f^{(a)}g}$$

$$\frac{e \equiv fe +_a g \qquad \text{f is productive}}{e \equiv f^{(a)}g}$$

$$\mathbf{e^{(a)}} \equiv \mathbf{e}\mathbf{e^{(a)}} +_{\mathbf{a}} \mathbf{1}$$

$$\frac{e \equiv fe +_{a} g \qquad f \text{ is productive}}{e \equiv f^{(a)}g}$$

$$e^{(a)} \equiv ee^{(a)} +_a 1 \qquad (e +_a 1)^{(b)} \equiv (ae)^{(b)}$$

$$\frac{e \equiv fe +_{a} g \qquad \text{f is productive}}{e \equiv f^{(a)}g}$$

$$e^{(a)} \equiv ee^{(a)} +_a 1$$

$$e^{(a)} \equiv ee^{(a)} +_a 1$$
 $(e +_a 1)^{(b)} \equiv (ae)^{(b)}$

Lemma

For every **e**, there exists a productive $\hat{\mathbf{e}}$ such that $\mathbf{e}^{(\mathbf{b})} \equiv \hat{\mathbf{e}}^{(\mathbf{b})}$.

$$\frac{e \equiv fe +_{a} g \qquad \text{f is productive}}{e \equiv f^{(a)}g}$$

$$e^{(a)} \equiv ee^{(a)} +_a$$

$$e^{(a)} \equiv ee^{(a)} +_a 1$$
 $(e +_a 1)^{(b)} \equiv (ae)^{(b)}$

Lemma

For every **e**, there exists a productive $\hat{\mathbf{e}}$ such that $\mathbf{e}^{(\mathbf{b})} \equiv \hat{\mathbf{e}}^{(\mathbf{b})}$.

Lemma

$$e^{(a)} \equiv e^{(a)} \overline{a}$$

$$e^{(a)} \equiv (ae)^{(a)}$$

$$e^{(ab)}e^{(b)} \equiv e^{(b)}$$

Axiomatization / soundness & completeness

Theorem (Soundness)

If
$$\mathbf{e} \equiv \mathbf{f}$$
, then $[\![\mathbf{e}]\!] = [\![\mathbf{f}]\!]$.

Axiomatization / soundness & completeness

Theorem (Soundness)

If
$$e \equiv f$$
, then $[e] = [f]$.

How about the converse?

$$\blacksquare A \mapsto S(A)$$
 and $\mathbf{e} \mapsto A_{\mathbf{e}}$ with

$$\textcolor{red}{e} \equiv \mathcal{S}(\textit{A}_{\textcolor{red}{e}})$$

If
$$A \sim A'$$
, then $S(A) \equiv S(A')$.

Axiomatization / soundness & completeness

Theorem (Soundness)

If
$$e \equiv f$$
, then $[e] = [f]$.

How about the converse?

$$\blacksquare$$
 $A \mapsto S(A)$ and $\mathbf{e} \mapsto A_{\mathbf{e}}$ with

$${\color{red}e}\equiv {\color{blue}{\cal S}({\color{blue}{\cal A}_e})}$$

If
$$A \sim A'$$
, then $S(A) \equiv S(A')$.

$$\label{eq:local_energy} \begin{split} \llbracket \textbf{e} \rrbracket &= \llbracket \textbf{f} \rrbracket \implies \textit{L}(\textit{A}_{\textbf{e}}) = \textit{L}(\textit{A}_{\textbf{f}}) \\ &\implies \textit{A}_{\textbf{e}} \sim \textit{A}_{\textbf{f}} \\ &\implies \textit{S}(\textit{A}_{\textbf{e}}) \equiv \textit{S}(\textit{A}_{\textbf{f}}) \\ &\implies \textbf{e} \equiv \textbf{f} \end{split}$$

Axiomatization/soundness & completeness

Theorem (Soundness)

If
$$\mathbf{e} \equiv \mathbf{f}$$
, then $[\![\mathbf{e}]\!] = [\![\mathbf{f}]\!]$.

Theorem (Completeness)

If
$$[e] = [f]$$
, then $e \equiv f$.

How about the converse?

 \blacksquare $A \mapsto S(A)$ and $\mathbf{e} \mapsto A_{\mathbf{e}}$ with

$$\textbf{e} \equiv \mathcal{S}(\textit{A}_{\textbf{e}})$$

If $A \sim A'$, then $S(A) \equiv S(A')$.

$$\begin{split} \llbracket \mathbf{e} \rrbracket &= \llbracket \mathbf{f} \rrbracket \implies L(A_\mathbf{e}) = L(A_\mathbf{f}) \\ &\implies A_\mathbf{e} \sim A_\mathbf{f} \\ &\implies S(A_\mathbf{e}) \equiv S(A_\mathbf{f}) \\ &\implies \mathbf{e} \equiv \mathbf{f} \end{split}$$

Axiomatization/soundness & completeness

Theorem (Soundness)

If
$$\mathbf{e} \equiv \mathbf{f}$$
, then $[\![\mathbf{e}]\!] = [\![\mathbf{f}]\!]$.

Theorem (Completeness)

If
$$[e] = [f]$$
, then $e \equiv f$.

How about the converse?

 \blacksquare $A \mapsto S(A)$ and $\mathbf{e} \mapsto A_{\mathbf{e}}$ with

$$\textbf{e} \equiv \mathcal{S}(\textit{A}_{\textbf{e}})$$

If $A \sim A'$, then $S(A) \equiv S(A')$.

$$\label{eq:local_local_local_local} \begin{split} \llbracket \textbf{e} \rrbracket &= \llbracket \textbf{f} \rrbracket \implies \textit{L}(\textit{A}_{\textbf{e}}) = \textit{L}(\textit{A}_{\textbf{f}}) \\ &\implies \textit{A}_{\textbf{e}} \sim \textit{A}_{\textbf{f}} \\ &\implies \textit{S}(\textit{A}_{\textbf{e}}) \equiv \textit{S}(\textit{A}_{\textbf{f}}) \\ &\implies \textbf{e} \equiv \textbf{f} \end{split}$$

$$\beta p \gamma q \alpha \in L(A)$$

$$(X, \delta: X \rightarrow (2 + \Sigma \times X)^{Atoms})$$

Not described by an expression e:

See [Kozen and Tseng 2008].

$$h: Atoms \rightarrow 2 + \Sigma \times X$$
 $h(\alpha) = (p, \bullet)$
 $h(\beta) = 0$
 $h(\gamma) = (q, \bullet)$
 $h(\delta) = 1$
 $h(-) = 0$

$$h: Atoms \rightarrow 2 + \Sigma \times X$$
 $h(\alpha) = (p, \bullet)$
 $h(\beta) = 0$
 $h(\gamma) = (q, \bullet)$
 $h(\delta) = 1$
 $h(-) = 0$

A Kleene theorem/main result

Theorem

Let L be a language of guarded strings. The following are equivalent:

- L = [e] for some e.
- L is accepted by a well-nested and finite automaton A.

A Kleene theorem/main result

Theorem

Let L be a language of guarded strings. The following are equivalent:

- L = [e] for some e.
- L is accepted by a well-nested and finite automaton A.

- Both conversions are constructive.
- Automata are linear in size of expression.
- Side-conditions for completeness also hold.

A Kleene theorem/main result

Theorem

Let L be a language of guarded strings. The following are equivalent:

- L = [e] for some e.
- L is accepted by a well-nested and finite automaton A.

- Both conversions are constructive.
- Automata are linear in size of expression.
- Side-conditions for completeness also hold.

Further work

- Which theories could we embed while keeping decidability?
- Are more parameterized semantics possible?
- How do we recover a small program from an automaton?
- Which extensions of the syntax would be interesting?

kap.pe/slides	
arxiv.org/abs/1907.05920	