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Introduction

Contributions:
Nearly linear time decision procedure for equivalence."
Axiomatization of uninterpreted program equivalence.
Kleene theorem for uninterpreted programs.

"For fixed number of tests.
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: if b then

while a and b do
e,
end
while a do
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while a and b do

end
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i = (sat, eval)

Ri[e] : States — 25tates
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Atoms = 27 GS(Z, T) = Atoms - (L - Atoms)*
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n times neN
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[[e]] = [[f]] <~ Vi. 3%,-[[e]] = Ri[[f]]



Decision procedure

Theorem
le] = [f] < Vi. Ri[e] = R[f]

How to check [e] = [f]:

Create automata that accept [e]] and [f] [Thompson 1968]
Check automata for bisimilarity [Hopcroft and Karp 1971; Tarjan 1975]
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Decision procedure

Theorem
le] =[f] < Vi.Ri[e] = Ri[f]

How to check [e] = [f]:
Create automata that accept [e]] and [f] [Thompson 1968]
Check automata for bisimilarity [Hopcroft and Karp 1971; Tarjan 1975]

Decidability
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e=fe+ag
e =flg

Allows to derive 1 =11 je,,

assert true = while true do assert true
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ad P e@ = eel® 4, 1 (e +4 1) = (ae)®

e =g

For every e, there exists a productive é such thate®) = &®)

e@® =el@a e® = (ae)® e@e®) = g(b)



Ife =1, then [e] = [f].
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How about the converse?

IEECiSTIEOUERos M| A StAland & Ay wilh

Ife =1, then [e] = [f]. e = S(A)

If A~ A’, then S(A) = S(A’).

[e] =[] = L(Ae) = L(Ap)
= Ae ~ A
— S(Aes) = S(Af)
= e=f



Axiomatization/soundness & completeness

How about the converse?

Theorem (Soundness) A S(A) and e — Ae with

Ife =1, then [e] = [f]. e = S(Ae)

If A~ A’, then S(A) = S(A’).
Theorem (Completeness)

If [e] = [f], thene =1{. [e] =[f] = L(Ae) = L(A)
— Ao~ A
= S(As) = S(A)
= e=f
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Axiomatization/soundness & completeness

How about the converse?
Theorem (Soundness) A S(A) and e — Ae with

Ife =1, then [e] = [f]. e = S(Ae)

If A~ A’, then S(A) = S(A’).
Theorem (Completeness)

If [e] = [f], thene = {. [e] =[f] = L(Ae) =L(A)
= Ae ~ A
= S(Ae) = S(A)

Axiomatization — o=t
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(X,8: X — (24 £ x X)Ams)



Not described by an expression e:

&1/ Pot

See [Kozen and Tseng 2008].
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A Kleene theorem/ main result

Theorem

Let L be a language of guarded strings. The following are equivalent:
L = [e] for somee.
L is accepted by a well-nested and finite automaton A.
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Theorem

Let L be a language of guarded strings. The following are equivalent:
L = [e] for somee.
L is accepted by a well-nested and finite automaton A.

Both conversions are constructive.
Automata are linear in size of expression.
Side-conditions for completeness also hold.
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A Kleene theorem/ main result

Theorem

Let L be a language of guarded strings. The following are equivalent:
L = [e] for somee.
L is accepted by a well-nested and finite automaton A.

Both conversions are constructive.
Kleene

Automata are linear in size of expression.

Side-conditions for completeness also hold. Theorem
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Further work

Which theories could we embed while keeping decidability?
Are more parameterized semantics possible?
How do we recover a small program from an automaton?

Which extensions of the syntax would be interesting?
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