

Concurrent Kleene Algebra

Tobias Kappé

University College London

BCTCS 2018

What is Kleene Algebra?

Kleene Algebra describes program behavior

What is Kleene Algebra?

Kleene Algebra describes program behavior

regular expressions

What is Kleene Algebra?

order, repetition

Kleene Algebra describes program behavior

regular expressions

```
\begin{tabular}{lll} \textbf{while} & \varphi_1 & \textbf{do} \\ & & \textbf{if} & \varphi_2 & \textbf{then} \\ & & & foo; \\ & \textbf{else} \\ & & & bar; \\ & \textbf{end} \\ \end \\ \en
```

```
\begin{array}{c|c} \textbf{while} \ \psi_1 \ \textbf{do} \\ & \text{foo}; \\ \textbf{end} \\ \textbf{while} \ \psi_2 \ \textbf{do} \\ & \text{bar}; \\ & \textbf{while} \ \psi_3 \ \textbf{do} \\ & & \text{foo}; \\ & \textbf{end} \\ \end{array}
```

```
\begin{array}{c|c} \textbf{while} \ \varphi_1 \ \textbf{do} \\ & \textbf{if} \ \varphi_2 \ \textbf{then} \\ & | \ \textbf{foo}; \\ & \textbf{else} \\ & | \ \textbf{bar}; \\ & \textbf{end} \\ \end{array}
```

```
\begin{array}{c|c} \textbf{while} \ \psi_1 \ \textbf{do} \\ & \text{foo}; \\ \textbf{end} \\ \textbf{while} \ \psi_2 \ \textbf{do} \\ & \text{bar}; \\ & \textbf{while} \ \psi_3 \ \textbf{do} \\ & & \text{foo}; \\ & \textbf{end} \\ \\ \textbf{end} \end{array}
```

EVERYBODY STAND BACK.

```
\begin{array}{c|c} \textbf{while} \ \varphi_1 \ \textbf{do} \\ & \textbf{if} \ \varphi_2 \ \textbf{then} \\ & | \ \textbf{foo}; \\ & \textbf{else} \\ & | \ \textbf{bar}; \\ & \textbf{end} \\ \end{array} \right) \ (\textbf{foo} + \textbf{bar})^*
```

```
\begin{array}{ll} \text{while } \psi_1 \text{ do} \\ & \text{foo;} \\ \text{end} \\ \text{while } \psi_2 \text{ do} \\ & \text{bar;} \\ & \text{while } \psi_3 \text{ do} \\ & & \text{foo;} \\ & \text{end} \\ \end{array}
```

I KNOW REGULAR EXPRESSIONS.

```
\begin{array}{c|c} \textbf{while} \ \varphi_1 \ \textbf{do} \\ \hline \ \textbf{if} \ \varphi_2 \ \textbf{then} \\ \hline \ \ | \ \ \text{foo}; \\ \ \textbf{else} \\ \hline \ \ \ | \ \ \text{bar}; \\ \ \textbf{end} \\ \\ \textbf{end} \\ \end{array} \right) \ (\text{foo} + \text{bar})^*
```

```
while \psi_1 do
    foo;
end
while \psi_2 do
   bar;
                        foo* · (bar · foo*)*
   while \psi_3 do
        foo;
    end
end
```

We can prove this using KA:

$$(\mathsf{foo} + \mathsf{bar})^* \equiv_{\mathsf{KA}} \mathsf{foo}^* \cdot (\mathsf{bar} \cdot \mathsf{foo}^*)^*$$

where \equiv_{KA} is generated by axioms such as (among others)

$$e + e \equiv_{\scriptscriptstyle{\mathsf{KA}}} e$$

$$oldsymbol{e} \cdot \mathbf{1} \equiv_{\mathsf{KA}} oldsymbol{e}$$

$$e^* \equiv_{\scriptscriptstyle\mathsf{KA}} 1 + e \cdot e^*$$

The lay of the land

KA is well-understood:

The lay of the land

KA is well-understood:

Theorem (Salomaa 1966; Kozen 1994)

KA axiomatizes regex-equivalence, i.e., $e \equiv_{KA} f \Leftrightarrow \mathcal{L}(e) = \mathcal{L}(f)$.

The lay of the land

KA is well-understood:

Theorem (Salomaa 1966; Kozen 1994)

KA axiomatizes regex-equivalence, i.e., $e \equiv_{KA} f \Leftrightarrow \mathcal{L}(e) = \mathcal{L}(f)$.

Theorem (Kleene 1956; Brzozowski 1964)

Every regex is equivalent to some finite automaton, and vice versa.

Towards concurrency

Thread 1	Thread 2
а	С
b	d

How do we model concurrent composition in KA?

Towards concurrency

Thread 1 Thread 2
$$\begin{array}{c|cccc}
 & c \\
 & b \\
\hline
 & a \cdot b \cdot c \cdot d + a \cdot c \cdot b \cdot d + \cdots?
\end{array}$$

Interleaving is insufficient!

Towards concurrency

Thread 1 Thread 2
$$\begin{array}{ccc}
a & c \\
b & d
\end{array}$$

$$(a \cdot b) \parallel (c \cdot d)$$

Concurrent KA^a adds parallel composition (||)

- expressions grow linearly with the program
- interleaving still possible: $(e \parallel f) \cdot (g \parallel h) \leq_{CKA} (e \cdot g) \parallel (f \cdot h)$.

^aHoare et al. 2009.

Questions begged

Enquiring minds want to know:

Questions begged

Enquiring minds want to know:

Question

Does CKA axiomatize "concurrent regex" equivalence, i.e., $e \equiv_{\texttt{CKA}} f \Leftrightarrow \mathcal{L}_{\parallel}(e) = \mathcal{L}_{\parallel}(f)$?

Questions begged

Enquiring minds want to know:

Question

Does CKA axiomatize "concurrent regex" equivalence, i.e., $\mathbf{e} \equiv_{\mathsf{CKA}} \mathbf{f} \Leftrightarrow \mathcal{L}_{\parallel}(\mathbf{e}) = \mathcal{L}_{\parallel}(\mathbf{f})$?

Question

Is there an automaton model that corresponds to concurrent regular expressions?

A pomset is a "word with parallelism"

A pomset is a "word with parallelism"

A pomset is a "word with parallelism"

$$a \cdot (b \parallel c) \cdot d \approx a$$

Pomset subsumption:

$$\begin{array}{ccc}
a \longrightarrow c & a \longrightarrow c \\
\swarrow & \sqsubseteq \\
b \longrightarrow d & b \longrightarrow d
\end{array}$$

A pomset is a "word with parallelism"

$$a \cdot (b \parallel c) \cdot d \approx a$$

Pomset subsumption:

$$(a \parallel b) \cdot (c \parallel d) \approx \begin{array}{c} a \longrightarrow c \\ \searrow \\ b \longrightarrow d \end{array} \subseteq \begin{array}{c} a \longrightarrow c \\ b \longrightarrow d \end{array} \approx (a \cdot c) \parallel (b \cdot d)$$

Composition lifts to pomset languages:

- $\blacksquare \mathcal{U} \parallel \mathcal{V} = \{ U \parallel V : U \in \mathcal{U}, V \in \mathcal{V} \}$

Composition lifts to pomset languages:

$$\blacksquare \ \mathcal{U} \parallel \mathcal{V} = \{ \textit{\textbf{U}} \parallel \textit{\textbf{V}} : \textit{\textbf{U}} \in \mathcal{U}, \textit{\textbf{V}} \in \mathcal{V} \}$$

Kleene star: $\mathcal{U}^* = \bigcup_{n < \omega} \mathcal{U}^n$

Composition lifts to pomset languages:

$$\blacksquare \ \mathcal{U} \parallel \mathcal{V} = \{ \textit{\textbf{U}} \parallel \textit{\textbf{V}} : \textit{\textbf{U}} \in \mathcal{U}, \textit{\textbf{V}} \in \mathcal{V} \}$$

Kleene star: $\mathcal{U}^* = \bigcup_{n < \omega} \mathcal{U}^n$

Closure: $\mathcal{U}\downarrow = \{U' \in \mathsf{Pom}_{\Sigma} : U' \sqsubseteq U \in \mathcal{U}\}.$

Axiomatization

CKA semantics is given by $[\![-]\!]_{CKA}: \mathfrak{T} \to 2^{\mathsf{Pom}_{\Sigma}}$.

CKA axioms is given by axioms of KA, plus

$$e \parallel f \equiv_{\mathsf{CKA}} f \parallel e$$
 $0 \parallel f \equiv_{\mathsf{CKA}} 0$ $1 \parallel f \equiv_{\mathsf{CKA}} f$ $(e+f) \parallel g \equiv_{\mathsf{CKA}} e \parallel g+f \parallel g$ $e \parallel (f \parallel g) = (e \parallel f) \parallel g$ $(e \parallel f) \cdot (g \parallel h) \leqq_{\mathsf{CKA}} (e \cdot g) \parallel (f \cdot h)$

Axiomatization

Theorem (Kappé et al. 2018)

The axioms for CKA are sound and complete for semantic equivalence:

$$oldsymbol{e} \equiv_{ extsf{cka}} f \Leftrightarrow \llbracket oldsymbol{e}
rbracket^{}_{ extsf{cka}} = \llbracket f
rbracket^{}_{ extsf{cka}}$$

Axiomatization

Theorem (Kappé et al. 2018)

The axioms for CKA are sound and complete for semantic equivalence:

$$oldsymbol{e} \equiv_{ exttt{CKA}} f \Leftrightarrow \llbracket oldsymbol{e}
rbracket^{}_{ exttt{CKA}} = \llbracket f
rbracket^{}_{ exttt{CKA}}$$

Question

What happens when we add the "parallel Kleene star"?

$$a \cdot (b \parallel c \cdot d)$$

$$a \cdot (b \parallel c \cdot d) \cdot e$$

 $a \parallel b$

$$a \cdot (a \parallel b) \parallel b$$

$$a \cdot (a \cdot (a \parallel b)) \parallel b$$

Theorem (K. et al. 2017)

The following are equivalent:

- \mathbb{I} \mathcal{U} is described by a concurrent regex
- III U is recognized by a fork-acyclic pomset automaton.

Further work

Question

KA can be described coalgebraically; what about CKA?

Further work

Question

KA can be described coalgebraically; what about CKA?

Question

Is equivalence of pomset-automata (tractably) decidable?

Further work

Question

KA can be described coalgebraically; what about CKA?

Question

Is equivalence of pomset-automata (tractably) decidable?

Question

NetKAT can be used to describe network policy. Can we add concurrency?

Thank you for your attention

Code: https://doi.org/10.5281/zenodo.926651.

Illustrations adapted from https://xkcd.com/208/(CC-BY-NC)