
Leapfrog:
Certified Equivalence for Protocol Parsers

Tobias Kappé

Open University of the Netherlands
ILLC, University of Amsterdam

June 28, 2022

Joint work with folks at Cornell

Ryan Doenges John Sarracino

Nate Foster Greg Morrisett

Packet parsing

01000111011011110010

00000110001001101001

01100111001000000111

00100110010101100100

(and metadata)

header baby ip {
bit<8> src;

bit<8> dst;

bit<4> proto;

} (and metadata)

Success Error

Packet parsing

01000111011011110010

00000110001001101001

01100111001000000111

00100110010101100100

(and metadata)

header baby ip {
bit<8> src;

bit<8> dst;

bit<4> proto;

} (and metadata)

Success Error

Packet parsing

01000111011011110010

00000110001001101001

01100111001000000111

00100110010101100100

(and metadata)

header baby ip {
bit<8> src;

bit<8> dst;

bit<4> proto;

} (and metadata)

Success

Error

Packet parsing

01000111011011110010

00000110001001101001

01100111001000000111

00100110010101100100

(and metadata)

header baby ip {
bit<8> src;

bit<8> dst;

bit<4> proto;

} (and metadata)

Success Error

A horror story

control logic

parsed packet

+ metadata

flag set?

output packet

+ metadata

forward

norecirculate

yes

A horror story

control logic

parsed packet

+ metadata

flag set?

output packet

+ metadata

forward

norecirculate

yes

A horror story

control logic

parsed packet

+ metadata

flag set?

output packet

+ metadata

forward

norecirculate

yes

A horror story

control logic

parsed packet

+ metadata

flag set?

output packet

+ metadata

forward

no

recirculate

yes

A horror story

control logic

parsed packet

+ metadata

flag set?

output packet

+ metadata

forward

norecirculate

yes

State of the art

Verification frameworks for parsers exist:

▶ p4v (Liu et al. 2018)

▶ Aquila (Tian et al. 2021)

▶ Neves et al. 2018

Great works. . . but room for improvement:

▶ Only functional properties are verified.

▶ No reusable certificate is produced.

▶ Rely on (trusted) verification to IR.

State of the art

Verification frameworks for parsers exist:

▶ p4v (Liu et al. 2018)

▶ Aquila (Tian et al. 2021)

▶ Neves et al. 2018

Great works. . . but room for improvement:

▶ Only functional properties are verified.

▶ No reusable certificate is produced.

▶ Rely on (trusted) verification to IR.

State of the art

Verification frameworks for parsers exist:

▶ p4v (Liu et al. 2018)

▶ Aquila (Tian et al. 2021)

▶ Neves et al. 2018

Great works. . . but room for improvement:

▶ Only functional properties are verified.

▶ No reusable certificate is produced.

▶ Rely on (trusted) verification to IR.

State of the art

Verification frameworks for parsers exist:

▶ p4v (Liu et al. 2018)

▶ Aquila (Tian et al. 2021)

▶ Neves et al. 2018

Great works. . . but room for improvement:

▶ Only functional properties are verified.

▶ No reusable certificate is produced.

▶ Rely on (trusted) verification to IR.

Comparing parsers

?
≈

Comparing parsers

?
≈

Comparing parsers

?
≈

Contribution

▶ P4 automata: a syntax and semantics for protocol parsers.

▶ Algorithm to check (hyperproperties like) language equivalence.

▶ Implementation of algorithm in Coq + SMT solver.

▶ Proof of soundness (in Coq) and completeness (on paper).

Contribution

▶ P4 automata: a syntax and semantics for protocol parsers.

▶ Algorithm to check (hyperproperties like) language equivalence.

▶ Implementation of algorithm in Coq + SMT solver.

▶ Proof of soundness (in Coq) and completeness (on paper).

Contribution

▶ P4 automata: a syntax and semantics for protocol parsers.

▶ Algorithm to check (hyperproperties like) language equivalence.

▶ Implementation of algorithm in Coq + SMT solver.

▶ Proof of soundness (in Coq) and completeness (on paper).

Contribution

▶ P4 automata: a syntax and semantics for protocol parsers.

▶ Algorithm to check (hyperproperties like) language equivalence.

▶ Implementation of algorithm in Coq + SMT solver.

▶ Proof of soundness (in Coq) and completeness (on paper).

Running Example

Parameters: states Q, headers H, header sizes sz : H → N.

Semantics

c = ⟨q1, s, ϵ⟩

Semantics

c = ⟨q1, s, 0⟩

Semantics

c = ⟨q1, s, 01⟩

Semantics

c = ⟨q1, s, 01 · · ·⟩

Semantics

c = ⟨q1, s, 01 · · · 0⟩

Semantics

c = ⟨q1, s[01 · · · 0/mpls], 01 · · · 0⟩

Semantics

c = ⟨q2, s[01 · · · 0/mpls], 01 · · · 0⟩

Semantics

c = ⟨q2, s[01 · · · 0/mpls], ϵ⟩

Formalization

Every P4 automaton gives rise to a DFA ⟨C , δ,F ⟩.

Definition (Bisimulation)

A binary relation R is a bisimulation if for all c1 R c2,

1. c1 ∈ F if and only if c2 ∈ F

2. δ(c1, b) R δ(c2, b) for all b

Definition (Equivalence)

P1 and P2 are equivalent if there exists a bisimulation that relates their start states.

Formalization

Every P4 automaton gives rise to a DFA ⟨C , δ,F ⟩.

Definition (Bisimulation)

A binary relation R is a bisimulation if for all c1 R c2,

1. c1 ∈ F if and only if c2 ∈ F

2. δ(c1, b) R δ(c2, b) for all b

Definition (Equivalence)

P1 and P2 are equivalent if there exists a bisimulation that relates their start states.

Formalization

Every P4 automaton gives rise to a DFA ⟨C , δ,F ⟩.

Definition (Bisimulation)

A binary relation R is a bisimulation if for all c1 R c2,

1. c1 ∈ F if and only if c2 ∈ F

2. δ(c1, b) R δ(c2, b) for all b

Definition (Equivalence)

P1 and P2 are equivalent if there exists a bisimulation that relates their start states.

Challenge

Problem: |C | ≥ 1037 for reference MPLS parser.

Two-pronged solution:

▶ Symbolic representation + SMT solving.

▶ Up-to techniques to skip buffering.

Symbolic representation

First-order logic with semantics JϕK ⊆ C × C .

Examples

▶ ϕ = q<1 means “the left state is q1”

▶ ϕ = 10> means “the right buffer has 10 bits”

▶ mpls<[24 : 24] = 1 means “the 24th bit of the mpls header in the left store is 1”

Definition (Symbolic bisimulation)

If JϕK is a bisimulation, then ϕ is a symbolic bisimulation.

Symbolic representation

First-order logic with semantics JϕK ⊆ C × C .

Examples

▶ ϕ = q<1 means “the left state is q1”

▶ ϕ = 10> means “the right buffer has 10 bits”

▶ mpls<[24 : 24] = 1 means “the 24th bit of the mpls header in the left store is 1”

Definition (Symbolic bisimulation)

If JϕK is a bisimulation, then ϕ is a symbolic bisimulation.

Symbolic representation

First-order logic with semantics JϕK ⊆ C × C .

Examples

▶ ϕ = q<1 means “the left state is q1”

▶ ϕ = 10> means “the right buffer has 10 bits”

▶ mpls<[24 : 24] = 1 means “the 24th bit of the mpls header in the left store is 1”

Definition (Symbolic bisimulation)

If JϕK is a bisimulation, then ϕ is a symbolic bisimulation.

Symbolic representation

First-order logic with semantics JϕK ⊆ C × C .

Examples

▶ ϕ = q<1 means “the left state is q1”

▶ ϕ = 10> means “the right buffer has 10 bits”

▶ mpls<[24 : 24] = 1 means “the 24th bit of the mpls header in the left store is 1”

Definition (Symbolic bisimulation)

If JϕK is a bisimulation, then ϕ is a symbolic bisimulation.

Equivalence checking — intuition

ϕ0 = accept< ⇐⇒ accept>

ϕ1 = WP(ϕ0) ϕ2 = WP(ϕ1)

ϕ0

Equivalence checking — intuition

ϕ0 = accept< ⇐⇒ accept>

ϕ1 = WP(ϕ0)

ϕ2 = WP(ϕ1)

ϕ0 ∧ ϕ1

Equivalence checking — intuition

ϕ0 = accept< ⇐⇒ accept>

ϕ1 = WP(ϕ0) ϕ2 = WP(ϕ1)

ϕ0 ∧ ϕ1 ∧ ϕ2

Equivalence checking — algorithm

R ← ∅
T ← {accept< ⇐⇒ accept>}
while T ̸= ∅ do

pop ψ from T
if not

∧
R ⊨ ψ then

R ← R ∪ {ψ}
T ← T ∪WP(ψ)

if ϕ ⊨
∧
R then

return true
else

return false

Equivalence checking — algorithm

R ← ∅
T ← {accept< ⇐⇒ accept>}
while T ̸= ∅ do

pop ψ from T
if not

∧
R ⊨ ψ then

R ← R ∪ {ψ}
T ← T ∪WP(ψ)

if ϕ ⊨
∧
R then

return true
else

return false

Loop termination: either

▶ J
∧
RK shrinks; or

▶ J
∧
RK stays the same, T shrinks.

Equivalence checking — algorithm

R ← ∅
T ← {accept< ⇐⇒ accept>}
while T ̸= ∅ do

pop ψ from T
if not

∧
R ⊨ ψ then

R ← R ∪ {ψ}
T ← T ∪WP(ψ)

if ϕ ⊨
∧
R then

return true
else

return false

Loop invariants:

▶ If c1 J
∧
(R ∪ T)K c2, then

c1 ∈ F ⇐⇒ c2 ∈ F .

▶ If c1 J
∧
(R ∪ T)K c2, then

δ(c1, b) J
∧
RK δ(c2, b).

▶ If ϕ is a symbolic bisimulation,
then ϕ ⊨

∧
(R ∪ T).

After the loop,
∧
R is the weakest sym-

bolic bisimulation.

Equivalence checking — algorithm

R ← ∅
T ← {accept< ⇐⇒ accept>}
while T ̸= ∅ do

pop ψ from T
if not

∧
R ⊨ ψ then

R ← R ∪ {ψ}
T ← T ∪WP(ψ)

if ϕ ⊨
∧
R then

return true
else

return false

Loop invariants:

▶ If c1 J
∧
(R ∪ T)K c2, then

c1 ∈ F ⇐⇒ c2 ∈ F .

▶ If c1 J
∧
(R ∪ T)K c2, then

δ(c1, b) J
∧
RK δ(c2, b).

▶ If ϕ is a symbolic bisimulation,
then ϕ ⊨

∧
(R ∪ T).

After the loop,
∧
R is the weakest sym-

bolic bisimulation.

Equivalence checking — algorithm

R ← ∅
T ← {accept< ⇐⇒ accept>}
while T ̸= ∅ do

pop ψ from T
if not

∧
R ⊨ ψ then

R ← R ∪ {ψ}
T ← T ∪WP(ψ)

if ϕ ⊨
∧
R then

return true
else

return false

Loop invariants:

▶ If c1 J
∧
(R ∪ T)K c2, then

c1 ∈ F ⇐⇒ c2 ∈ F .

▶ If c1 J
∧
(R ∪ T)K c2, then

δ(c1, b) J
∧
RK δ(c2, b).

▶ If ϕ is a symbolic bisimulation,
then ϕ ⊨

∧
(R ∪ T).

After the loop,
∧
R is the weakest sym-

bolic bisimulation.

Equivalence checking — algorithm

R ← ∅
T ← {accept< ⇐⇒ accept>}
while T ̸= ∅ do

pop ψ from T
if not

∧
R ⊨ ψ then

R ← R ∪ {ψ}
T ← T ∪WP(ψ)

if ϕ ⊨
∧
R then

return true
else

return false

Loop invariants:

▶ If c1 J
∧
(R ∪ T)K c2, then

c1 ∈ F ⇐⇒ c2 ∈ F .

▶ If c1 J
∧
(R ∪ T)K c2, then

δ(c1, b) J
∧
RK δ(c2, b).

▶ If ϕ is a symbolic bisimulation,
then ϕ ⊨

∧
(R ∪ T).

After the loop,
∧
R is the weakest sym-

bolic bisimulation.

Equivalence checking — algorithm

R ← ∅
T ← {accept< ⇐⇒ accept>}
while T ̸= ∅ do

pop ψ from T
if not

∧
R ⊨ ψ then

R ← R ∪ {ψ}
T ← T ∪WP(ψ)

if ϕ ⊨
∧
R then

return true
else

return false

Loop invariants:

▶ If c1 J
∧
(R ∪ T)K c2, then

c1 ∈ F ⇐⇒ c2 ∈ F .

▶ If c1 J
∧
(R ∪ T)K c2, then

δ(c1, b) J
∧
RK δ(c2, b).

▶ If ϕ is a symbolic bisimulation,
then ϕ ⊨

∧
(R ∪ T).

After the loop,
∧
R is the weakest sym-

bolic bisimulation.

Optimizations — Pruning the bisimulation

Optimizations — Pruning the bisimulation

Example (Unreachable pairs)

Left buffer 0, right buffer 13.

Optimizations — Pruning the bisimulation

Example (Buffering pairs)

Left buffer 7, right buffer 7.

Optimizations — Pruning the bisimulation

Optimizations — Pruning the bisimulation

⟨0, 0⟩

; ⟨0, 32⟩

Optimizations — Pruning the bisimulation

⟨0, 0⟩; ⟨0, 32
⟩

Optimizations — Pruning the bisimulation

⟨0, 0⟩; ⟨0, 32
⟩

⟨0, 32
⟩

Optimizations — Correctness

Idea: compute bisimulation with leaps instead.

♯(c1, c2) = “no. of bits until next state change”

R is a bisimulation with leaps if for all c1 R c2,

1. c1 ∈ F if and only if c2 ∈ F

2. δ∗(c1,w) R δ∗(c2,w) for all w ∈ {0, 1}♯(c1,c2)

This is an up-to technique in disguise!

Note: requires adjusting implementation of WP.

Implementation

— Side-stepping the termination checker

Implementation — Side-stepping the termination checker

Implementation — Side-stepping the termination checker

Algorithm state as proof rules:

ϕ ⊨
∧

R

pre bisim ϕ R []
close

∧
R ⊨ ψ pre bisim ϕ R T

pre bisim ϕ R (ψ :: T)
Skip

∧
R ̸⊨ ψ pre bisim ϕ (ψ :: R) (T ;WP(ψ))

pre bisim ϕ R (ψ :: T)
Extend

Lemma (Soundness)

If pre bisim ϕ [] I , then all pairs in JϕK are bisimilar.

Workflow: proof search for pre bisim, applying exactly one of these three rules.

Implementation — Talk to SMT solver

Implementation — Talk to SMT solver

In theory:

▶ If T is empty, apply Done.

▶ If
∧
R ⊨ ψ, apply Skip.

▶ If
∧
R ̸⊨ ψ, apply Extend.

In practice:

▶ Massage entailment into fully quantified boolean formula.

▶ Custom plugin pretty-prints to SMT-LIB 2.0, asks solver.

▶ If SAT, admit
∧
R ⊨ ψ and apply Skip.

▶ If UNSAT, admit
∧
R ̸⊨ ψ and apply Extend.

Implementation — Talk to SMT solver

Existing tools (Armand et al. 2011; Czajka and Kaliszyk 2018):

▶ Encode goal in SMT, translate result to Coq proof.

▶ No support for fully quantified boolean formulas.

▶ Very little control over eventual SMT query.

interp (R |= phi)

< vm_compute.

forall (x: bitvec n) (y: bitvec m), ...

< hammer.

Tactic failure: cannot solve this goal.

Implementation — Talk to SMT solver

Existing tools (Armand et al. 2011; Czajka and Kaliszyk 2018):

▶ Encode goal in SMT, translate result to Coq proof.

▶ No support for fully quantified boolean formulas.

▶ Very little control over eventual SMT query.

interp (R |= phi)

< vm_compute.

forall (x: bitvec n) (y: bitvec m), ...

< hammer.

Tactic failure: cannot solve this goal.

Implementation — Talk to SMT solver

Existing tools (Armand et al. 2011; Czajka and Kaliszyk 2018):

▶ Encode goal in SMT, translate result to Coq proof.

▶ No support for fully quantified boolean formulas.

▶ Very little control over eventual SMT query.

interp (R |= phi)

< vm_compute.

forall (x: bitvec n) (y: bitvec m), ...

< hammer.

Tactic failure: cannot solve this goal.

Implementation — Talk to SMT solver

Existing tools (Armand et al. 2011; Czajka and Kaliszyk 2018):

▶ Encode goal in SMT, translate result to Coq proof.

▶ No support for fully quantified boolean formulas.

▶ Very little control over eventual SMT query.

interp (R |= phi)

< vm_compute.

forall (x: bitvec n) (y: bitvec m), ...

< hammer.

Tactic failure: cannot solve this goal.

Implementation — Talk to SMT solver

Existing tools (Armand et al. 2011; Czajka and Kaliszyk 2018):

▶ Encode goal in SMT, translate result to Coq proof.

▶ No support for fully quantified boolean formulas.

▶ Very little control over eventual SMT query.

interp (R |= phi)

< vm_compute.

forall (x: bitvec n) (y: bitvec m), ...

< hammer.

Tactic failure: cannot solve this goal.

Implementation — Talk to SMT solver

Existing tools (Armand et al. 2011; Czajka and Kaliszyk 2018):

▶ Encode goal in SMT, translate result to Coq proof.

▶ No support for fully quantified boolean formulas.

▶ Very little control over eventual SMT query.

interp (R |= phi)

< vm_compute.

forall (x: bitvec n) (y: bitvec m), ...

< hammer.

Tactic failure: cannot solve this goal.

Implementation — Talk to SMT solver

Our approach:

▶ Series of verified simplifications in Gallina.

▶ Eventual goal is translated almost literally into SMT query.

▶ No back-translation — have to trust solver (for now).

interp (R |= phi)

< apply compile_formula.

interp’ (compile (R |= phi))

< cbn compile.

interp’ (FForall (FExists (...))

< verify_interp; admit.

Implementation — Talk to SMT solver

Our approach:

▶ Series of verified simplifications in Gallina.

▶ Eventual goal is translated almost literally into SMT query.

▶ No back-translation — have to trust solver (for now).

interp (R |= phi)

< apply compile_formula.

interp’ (compile (R |= phi))

< cbn compile.

interp’ (FForall (FExists (...))

< verify_interp; admit.

Implementation — Talk to SMT solver

Our approach:

▶ Series of verified simplifications in Gallina.

▶ Eventual goal is translated almost literally into SMT query.

▶ No back-translation — have to trust solver (for now).

interp (R |= phi)

< apply compile_formula.

interp’ (compile (R |= phi))

< cbn compile.

interp’ (FForall (FExists (...))

< verify_interp; admit.

Implementation — Talk to SMT solver

Our approach:

▶ Series of verified simplifications in Gallina.

▶ Eventual goal is translated almost literally into SMT query.

▶ No back-translation — have to trust solver (for now).

interp (R |= phi)

< apply compile_formula.

interp’ (compile (R |= phi))

< cbn compile.

interp’ (FForall (FExists (...))

< verify_interp; admit.

Implementation — Talk to SMT solver

Our approach:

▶ Series of verified simplifications in Gallina.

▶ Eventual goal is translated almost literally into SMT query.

▶ No back-translation — have to trust solver (for now).

interp (R |= phi)

< apply compile_formula.

interp’ (compile (R |= phi))

< cbn compile.

interp’ (FForall (FExists (...))

< verify_interp; admit.

Implementation — Talk to SMT solver

Our approach:

▶ Series of verified simplifications in Gallina.

▶ Eventual goal is translated almost literally into SMT query.

▶ No back-translation — have to trust solver (for now).

interp (R |= phi)

< apply compile_formula.

interp’ (compile (R |= phi))

< cbn compile.

interp’ (FForall (FExists (...))

< verify_interp; admit.

Implementation — Talk to SMT solver

Our approach:

▶ Series of verified simplifications in Gallina.

▶ Eventual goal is translated almost literally into SMT query.

▶ No back-translation — have to trust solver (for now).

interp (R |= phi)

< apply compile_formula.

interp’ (compile (R |= phi))

< cbn compile.

interp’ (FForall (FExists (...))

< verify_interp; admit.

Implementation — Demo

Ceci n’est pas une diapo vide.

Implementation — Trusted computing base

Evaluation — Benchmarks

Automatically verifies common transformations:

▶ Speculative extraction / vectorization.

▶ Common prefix factorization

▶ General versus specialized TLV parsing.

▶ Early versus late filtering.

Extends to certain hyperproperties:

▶ Independence of initial header store.

▶ Correspondence between final stores.

Evaluation — Benchmarks

Leapfrog verifies many interesting properties of protocol parsers.

Name States Branched (bits) Total (bits) Time (min) Mem. (GB)

U
ti
lit
y

St. rearrangement 5 8 136 0.12 0.66
Variable-length 30 64 632 953.42 405.64
Initialization 10 10 320 15.95 13.71
Speculation 5 2 160 4.12 3.16
Relational 6 64 1056 1.68 2.07
Filtering 6 64 1056 1.18 1.71

A
p
p
lic

a
b
ili
ty Edge 28 52 3184 528.38 251.26

Service Provider 22 50 2536 1244.5 499.80∗

Datacenter 30 242 2944 1387.95 404.50
Enterprise 22 176 2144 217.93 66.13
Tr. Validation 30 56 3148 746.2 350.48

Evaluation — Applicability study

parser-gen (Gibb et al. 2013) compiles parser to optimized implementation.

▶ Benchmarks: about 30 states each, huge store datastructure.

▶ Leapfrog can validate equivalence of input to output.

Lessons learned

▶ Finite automata can go the distance.

▶ Up-to techniques can be specialized.

▶ Programming in Coq is fun.

For your convenience:

▶ https://kap.pe/papers

▶ https://kap.pe/slides
http://langsec.org/occupy/

https://kap.pe/papers
https://kap.pe/slides
http://langsec.org/occupy/

References

M. Armand et al. (2011). “A Modular Integration of SAT/SMT Solvers to Coq
through Proof Witnesses”. In: CPP, pp. 135–150. doi:
10.1007/978-3-642-25379-9_12.
L. Czajka and C. Kaliszyk (2018). “Hammer for Coq: Automation for Dependent
Type Theory”. In: J. Autom. Reason. 61.1-4, pp. 423–453. doi:
10.1007/s10817-018-9458-4.
G. Gibb et al. (2013). “Design principles for packet parsers”. In: ANCS, pp. 13–24.
doi: 10.1109/ANCS.2013.6665172.
J. Liu et al. (2018). “p4v: practical verification for programmable data planes”. In:
SIGCOMM, pp. 490–503. doi: 10.1145/3230543.3230582.
M. C. Neves et al. (2018). “Verification of P4 programs in feasible time using
assertions”. In: CoNEXT, pp. 73–85. doi: 10.1145/3281411.3281421.
B. Tian et al. (2021). “Aquila: a practically usable verification system for
production-scale programmable data planes”. In: SIGCOMM, pp. 17–32. doi:
10.1145/3452296.3472937.

https://doi.org/10.1007/978-3-642-25379-9_12
https://doi.org/10.1007/s10817-018-9458-4
https://doi.org/10.1109/ANCS.2013.6665172
https://doi.org/10.1145/3230543.3230582
https://doi.org/10.1145/3281411.3281421
https://doi.org/10.1145/3452296.3472937

	References

