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State of the art

Verification frameworks for parsers exist:

▶ p4v (Liu et al. 2018)

▶ Aquila (Tian et al. 2021)

▶ Neves et al. 2018

Great works. . . but room for improvement:

▶ Only functional properties are verified.

▶ No reusable certificate is produced.

▶ Rely on (trusted) verification to IR.
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Contribution

▶ P4 automata: a syntax and semantics for protocol parsers.

▶ Algorithm to check (hyperproperties like) language equivalence.

▶ Implementation of algorithm in Coq + SMT solver.

▶ Proof of soundness (in Coq) and completeness (on paper).
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Running Example

Parameters: states Q, headers H, header sizes sz : H → N.



Semantics

c = ⟨q1, s, ϵ⟩



Semantics

c = ⟨q1, s, 0⟩



Semantics

c = ⟨q1, s, 01⟩



Semantics

c = ⟨q1, s, 01 · · ·⟩



Semantics

c = ⟨q1, s, 01 · · · 0⟩



Semantics

c = ⟨q1, s[01 · · · 0/mpls], 01 · · · 0⟩



Semantics

c = ⟨q2, s[01 · · · 0/mpls], 01 · · · 0⟩



Semantics

c = ⟨q2, s[01 · · · 0/mpls], ϵ⟩



Formalization

Every P4 automaton gives rise to a DFA ⟨C , δ,F ⟩.

Definition (Bisimulation)

A binary relation R is a bisimulation if for all c1 R c2,

1. c1 ∈ F if and only if c2 ∈ F

2. δ(c1, b) R δ(c2, b) for all b

Definition (Equivalence)

P1 and P2 are equivalent if there exists a bisimulation that relates their start states.
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Challenge

Problem: |C | ≥ 1037 for reference MPLS parser.

Two-pronged solution:

▶ Symbolic representation + SMT solving.

▶ Up-to techniques to skip buffering.



Symbolic representation

First-order logic with semantics JϕK ⊆ C × C .

Examples

▶ ϕ = q<1 means “the left state is q1”

▶ ϕ = 10> means “the right buffer has 10 bits”

▶ mpls<[24 : 24] = 1 means “the 24th bit of the mpls header in the left store is 1”

Definition (Symbolic bisimulation)

If JϕK is a bisimulation, then ϕ is a symbolic bisimulation.



Symbolic representation

First-order logic with semantics JϕK ⊆ C × C .

Examples

▶ ϕ = q<1 means “the left state is q1”

▶ ϕ = 10> means “the right buffer has 10 bits”

▶ mpls<[24 : 24] = 1 means “the 24th bit of the mpls header in the left store is 1”

Definition (Symbolic bisimulation)

If JϕK is a bisimulation, then ϕ is a symbolic bisimulation.



Symbolic representation

First-order logic with semantics JϕK ⊆ C × C .

Examples

▶ ϕ = q<1 means “the left state is q1”

▶ ϕ = 10> means “the right buffer has 10 bits”

▶ mpls<[24 : 24] = 1 means “the 24th bit of the mpls header in the left store is 1”

Definition (Symbolic bisimulation)

If JϕK is a bisimulation, then ϕ is a symbolic bisimulation.



Symbolic representation

First-order logic with semantics JϕK ⊆ C × C .

Examples

▶ ϕ = q<1 means “the left state is q1”

▶ ϕ = 10> means “the right buffer has 10 bits”

▶ mpls<[24 : 24] = 1 means “the 24th bit of the mpls header in the left store is 1”

Definition (Symbolic bisimulation)

If JϕK is a bisimulation, then ϕ is a symbolic bisimulation.



Equivalence checking — intuition

ϕ0 = accept< ⇐⇒ accept>

ϕ1 = WP(ϕ0) ϕ2 = WP(ϕ1)

ϕ0



Equivalence checking — intuition

ϕ0 = accept< ⇐⇒ accept>

ϕ1 = WP(ϕ0)

ϕ2 = WP(ϕ1)

ϕ0 ∧ ϕ1



Equivalence checking — intuition

ϕ0 = accept< ⇐⇒ accept>

ϕ1 = WP(ϕ0) ϕ2 = WP(ϕ1)

ϕ0 ∧ ϕ1 ∧ ϕ2



Equivalence checking — algorithm
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while T ̸= ∅ do
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if ϕ ⊨
∧
R then

return true
else

return false
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Optimizations — Pruning the bisimulation

Example (Unreachable pairs)

Left buffer 0, right buffer 13.



Optimizations — Pruning the bisimulation

Example (Buffering pairs)

Left buffer 7, right buffer 7.
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Optimizations — Correctness

Idea: compute bisimulation with leaps instead.

♯(c1, c2) = “no. of bits until next state change”

R is a bisimulation with leaps if for all c1 R c2,

1. c1 ∈ F if and only if c2 ∈ F

2. δ∗(c1,w) R δ∗(c2,w) for all w ∈ {0, 1}♯(c1,c2)

This is an up-to technique in disguise!

Note: requires adjusting implementation of WP.



Implementation

— Side-stepping the termination checker
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Implementation — Side-stepping the termination checker

Algorithm state as proof rules:

ϕ ⊨
∧

R

pre bisim ϕ R []
close

∧
R ⊨ ψ pre bisim ϕ R T

pre bisim ϕ R (ψ :: T )
Skip

∧
R ̸⊨ ψ pre bisim ϕ (ψ :: R) (T ;WP(ψ))

pre bisim ϕ R (ψ :: T )
Extend

Lemma (Soundness)

If pre bisim ϕ [] I , then all pairs in JϕK are bisimilar.

Workflow: proof search for pre bisim, applying exactly one of these three rules.
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Implementation — Talk to SMT solver

In theory:

▶ If T is empty, apply Done.

▶ If
∧
R ⊨ ψ, apply Skip.

▶ If
∧
R ̸⊨ ψ, apply Extend.

In practice:

▶ Massage entailment into fully quantified boolean formula.

▶ Custom plugin pretty-prints to SMT-LIB 2.0, asks solver.

▶ If SAT, admit
∧
R ⊨ ψ and apply Skip.

▶ If UNSAT, admit
∧
R ̸⊨ ψ and apply Extend.



Implementation — Talk to SMT solver

Existing tools (Armand et al. 2011; Czajka and Kaliszyk 2018):

▶ Encode goal in SMT, translate result to Coq proof.

▶ No support for fully quantified boolean formulas.

▶ Very little control over eventual SMT query.

interp (R |= phi)

< vm_compute.

forall (x: bitvec n) (y: bitvec m), ...

< hammer.

Tactic failure: cannot solve this goal.
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Implementation — Talk to SMT solver

Our approach:

▶ Series of verified simplifications in Gallina.

▶ Eventual goal is translated almost literally into SMT query.

▶ No back-translation — have to trust solver (for now).

interp (R |= phi)

< apply compile_formula.

interp’ (compile (R |= phi))

< cbn compile.

interp’ (FForall (FExists (...))

< verify_interp; admit.
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Implementation — Demo

Ceci n’est pas une diapo vide.



Implementation — Trusted computing base



Evaluation — Benchmarks

Automatically verifies common transformations:

▶ Speculative extraction / vectorization.

▶ Common prefix factorization

▶ General versus specialized TLV parsing.

▶ Early versus late filtering.

Extends to certain hyperproperties:

▶ Independence of initial header store.

▶ Correspondence between final stores.



Evaluation — Benchmarks

Leapfrog verifies many interesting properties of protocol parsers.

Name States Branched (bits) Total (bits) Time (min) Mem. (GB)

U
ti
lit
y

St. rearrangement 5 8 136 0.12 0.66
Variable-length 30 64 632 953.42 405.64
Initialization 10 10 320 15.95 13.71
Speculation 5 2 160 4.12 3.16
Relational 6 64 1056 1.68 2.07
Filtering 6 64 1056 1.18 1.71

A
p
p
lic

a
b
ili
ty Edge 28 52 3184 528.38 251.26

Service Provider 22 50 2536 1244.5 499.80∗

Datacenter 30 242 2944 1387.95 404.50
Enterprise 22 176 2144 217.93 66.13
Tr. Validation 30 56 3148 746.2 350.48



Evaluation — Applicability study

parser-gen (Gibb et al. 2013) compiles parser to optimized implementation.

▶ Benchmarks: about 30 states each, huge store datastructure.

▶ Leapfrog can validate equivalence of input to output.



Lessons learned

▶ Finite automata can go the distance.

▶ Up-to techniques can be specialized.

▶ Programming in Coq is fun.

For your convenience:

▶ https://kap.pe/papers

▶ https://kap.pe/slides
http://langsec.org/occupy/

https://kap.pe/papers
https://kap.pe/slides
http://langsec.org/occupy/
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