Leapfrog:
 Certified Equivalence for Protocol Parsers

Tobias Kappé
ILLC, University of Amsterdam

June 28, 2022

Joint work with folks at Cornell

Packet parsing

01000111011011110010
00000110001001101001
01100111001000000111
00100110010101100100
(and metadata)

Packet parsing

01000111011011110010
00000110001001101001
01100111001000000111
00100110010101100100
(and metadata)

Packet parsing

01000111011011110010
00000110001001101001
01100111001000000111
00100110010101100100
(and metadata)
header baby_ip \{
bit<8> src;
bit<8> dst;
bit<4> proto;
\} (and metadata)

Packet parsing

$$
\begin{gathered}
01000111011011110010 \\
00000110001001101001 \\
01100111001000000111 \\
00100110010101100100 \\
\text { (and metadata) }
\end{gathered}
$$

```
header baby_ip {
```

 bit<8> src;
 bit<8> dst;
 bit<4> proto;
 \} (and metadata)

A horror story

State of the art

Verification frameworks for parsers exist:

- p4v (Liu et al. 2018)
- Aquila (Tian et al. 2021)
- Neves et al. 2018

State of the art

Verification frameworks for parsers exist:

- p4v (Liu et al. 2018)
- Aquila (Tian et al. 2021)
- Neves et al. 2018

Great works. . . but room for improvement:

- Only functional properties are verified.

State of the art

Verification frameworks for parsers exist:

- p4v (Liu et al. 2018)
- Aquila (Tian et al. 2021)
- Neves et al. 2018

Great works. . . but room for improvement:

- Only functional properties are verified.
- No reusable certificate is produced.

State of the art

Verification frameworks for parsers exist:

- p4v (Liu et al. 2018)
- Aquila (Tian et al. 2021)
- Neves et al. 2018

Great works. . . but room for improvement:

- Only functional properties are verified.
- No reusable certificate is produced.
- Rely on (trusted) verification to IR.

Comparing parsers

Comparing parsers

Comparing parsers

Contribution

- P4 automata: a syntax and semantics for protocol parsers.

Contribution

- P4 automata: a syntax and semantics for protocol parsers.
- Algorithm to check (hyperproperties like) language equivalence.

Contribution

- P4 automata: a syntax and semantics for protocol parsers.
- Algorithm to check (hyperproperties like) language equivalence.
- Implementation of algorithm in Coq + SMT solver.

Contribution

- P4 automata: a syntax and semantics for protocol parsers.
- Algorithm to check (hyperproperties like) language equivalence.
- Implementation of algorithm in Coq + SMT solver.
- Proof of soundness (in Coq) and completeness (on paper).

Running Example

Parameters: states Q, headers H, header sizes sz: $H \rightarrow \mathbb{N}$.

Semantics

$$
c=\left\langle q_{1}, s, \epsilon\right\rangle
$$

Semantics

$$
c=\left\langle q_{1}, s, 0\right\rangle
$$

Semantics

$$
c=\left\langle q_{1}, s, 01\right\rangle
$$

Semantics

Semantics

$$
c=\left\langle q_{1}, s, 01 \cdots 0\right\rangle
$$

Semantics

$$
\left.c=\left\langle q_{1}, s[01 \cdots 0 / \mathrm{mpl}]\right], 01 \cdots 0\right\rangle
$$

Semantics

$$
c=\left\langle q_{2}, s[01 \cdots 0 / \mathrm{mpl} \mathrm{~s}], 01 \cdots 0\right\rangle
$$

Semantics

$$
c=\left\langle q_{2}, s[01 \cdots 0 / \mathrm{mpl} \mathrm{~s}], \epsilon\right\rangle
$$

Formalization

Every P 4 automaton gives rise to a DFA $\langle C, \delta, F\rangle$.

Formalization

Every P 4 automaton gives rise to a DFA $\langle C, \delta, F\rangle$.

Definition (Bisimulation)

A binary relation R is a bisimulation if for all $c_{1} R c_{2}$,

1. $c_{1} \in F$ if and only if $c_{2} \in F$
2. $\delta\left(c_{1}, b\right) R \delta\left(c_{2}, b\right)$ for all b

Formalization

Every P 4 automaton gives rise to a DFA $\langle C, \delta, F\rangle$.

Definition (Bisimulation)
A binary relation R is a bisimulation if for all $c_{1} R c_{2}$,

1. $c_{1} \in F$ if and only if $c_{2} \in F$
2. $\delta\left(c_{1}, b\right) R \delta\left(c_{2}, b\right)$ for all b

Definition (Equivalence)
P_{1} and P_{2} are equivalent if there exists a bisimulation that relates their start states.

Challenge

Problem: $|C| \geq 10^{37}$ for reference MPLS parser.
Two-pronged solution:

- Symbolic representation + SMT solving.
- Up-to techniques to skip buffering.

Symbolic representation

First-order logic with semantics $\llbracket \phi \rrbracket \subseteq C \times C$.
Examples

- $\phi=q_{1}^{<}$means "the left state is q_{1} "

Symbolic representation

First-order logic with semantics $\llbracket \phi \rrbracket \subseteq C \times C$.
Examples

- $\phi=q_{1}^{<}$means "the left state is q_{1} "
- $\phi=10^{>}$means "the right buffer has 10 bits"

Symbolic representation

First-order logic with semantics $\llbracket \phi \rrbracket \subseteq C \times C$.
Examples

- $\phi=q_{1}^{<}$means "the left state is q_{1} "
- $\phi=10^{>}$means "the right buffer has 10 bits"
- mpls $<[24: 24]=1$ means "the 24th bit of the mpls header in the left store is 1 "

Symbolic representation

First-order logic with semantics $\llbracket \phi \rrbracket \subseteq C \times C$.
Examples

- $\phi=q_{1}^{<}$means "the left state is q_{1} "
- $\phi=10^{>}$means "the right buffer has 10 bits"
- mpls $<[24: 24]=1$ means "the 24 th bit of the mpls header in the left store is 1 "

Definition (Symbolic bisimulation)
If $\llbracket \phi \rrbracket$ is a bisimulation, then ϕ is a symbolic bisimulation.

Equivalence checking - intuition

Equivalence checking - intuition

Equivalence checking - intuition

Equivalence checking - algorithm

$$
\begin{aligned}
& R \leftarrow \emptyset \\
& T \leftarrow\left\{\text { accept }^{<} \Longleftrightarrow \text { accept }^{>}\right\} \\
& \text {while } T \neq \emptyset \text { do } \\
& \text { pop } \psi \text { from } T \\
& \text { if not } \wedge R \vDash \psi \text { then } \\
& R \leftarrow R \cup\{\psi\} \\
& T \leftarrow T \cup \mathrm{WP}(\psi) \\
& \text { if } \phi \vDash \wedge R \text { then } \\
& \text { else } \\
& \text { return false }
\end{aligned}
$$

Equivalence checking - algorithm

$$
\begin{aligned}
& R \leftarrow \emptyset \\
& T \leftarrow\left\{\text { accept }^{<} \Longleftrightarrow \text { accept }^{>}\right\} \\
& \text {while } T \neq \emptyset \text { do } \\
& \text { pop } \psi \text { from } T \\
& \text { if not } \bigwedge R \vDash \psi \text { then } \\
& R \leftarrow R \cup\{\psi\} \\
& T \leftarrow T \cup \mathrm{WP}(\psi) \\
& \text { if } \phi \vDash \bigwedge R \text { then } \\
& \text { return true } \\
& \text { else } \\
& \text { return false }
\end{aligned}
$$

Loop termination: either

- $\llbracket \wedge R \rrbracket$ shrinks; or
- $\llbracket \bigwedge R \rrbracket$ stays the same, T shrinks.

Equivalence checking - algorithm

$$
\begin{aligned}
& R \leftarrow \emptyset \\
& T \leftarrow\left\{\text { accept }^{<} \Longleftrightarrow \text { accept }^{>}\right\} \\
& \text {while } T \neq \emptyset \text { do } \\
& \text { pop } \psi \text { from } T \\
& \text { if not } \bigwedge R \vDash \psi \text { then } \\
& R \leftarrow R \cup\{\psi\} \\
& T \leftarrow T \cup \mathrm{WP}(\psi) \\
& \text { if } \phi \vDash \bigwedge R \text { then } \\
& \text { return true } \\
& \text { else } \\
& \text { return false } \\
& \text { Loop invariants: }
\end{aligned}
$$

Equivalence checking - algorithm

$R \leftarrow \emptyset$
$T \leftarrow\left\{\right.$ accept $^{<} \Longleftrightarrow$ accept $\left.^{>}\right\}$
while $T \neq \emptyset$ do pop ψ from T if $\boldsymbol{n o t} \bigwedge R \vDash \psi$ then $R \leftarrow R \cup\{\psi\}$ $T \leftarrow T \cup \mathrm{WP}(\psi)$
if $\phi \vDash \bigwedge R$ then return true
else return false

Loop invariants:

- If $c_{1} \llbracket \bigwedge(R \cup T) \rrbracket c_{2}$, then

$$
c_{1} \in F \Longleftrightarrow c_{2} \in F
$$

Equivalence checking - algorithm

$R \leftarrow \emptyset$
$T \leftarrow\left\{\right.$ accept $^{<} \Longleftrightarrow$ accept $\left.^{>}\right\}$
while $T \neq \emptyset$ do pop ψ from T if $\boldsymbol{n o t} \bigwedge R \vDash \psi$ then $R \leftarrow R \cup\{\psi\}$ $T \leftarrow T \cup \mathrm{WP}(\psi)$
if $\phi \vDash \bigwedge R$ then return true
else return false

Loop invariants:

- If $c_{1} \llbracket \bigwedge(R \cup T) \rrbracket c_{2}$, then

$$
c_{1} \in F \Longleftrightarrow c_{2} \in F
$$

- If $c_{1} \llbracket \bigwedge(R \cup T) \rrbracket c_{2}$,

Equivalence checking - algorithm

$R \leftarrow \emptyset$
$T \leftarrow\left\{\right.$ accept $^{<} \Longleftrightarrow$ accept $\left.^{>}\right\}$
while $T \neq \emptyset$ do pop ψ from T if $\boldsymbol{n o t} \bigwedge R \vDash \psi$ then $R \leftarrow R \cup\{\psi\}$ $T \leftarrow T \cup \mathrm{WP}(\psi)$
if $\phi \vDash \bigwedge R$ then return true
else return false

Loop invariants:

- If $c_{1} \llbracket \bigwedge(R \cup T) \rrbracket c_{2}$, then

$$
c_{1} \in F \Longleftrightarrow c_{2} \in F
$$

- If $c_{1} \llbracket \bigwedge(R \cup T) \rrbracket c_{2}$,

Equivalence checking - algorithm

$R \leftarrow \emptyset$
$T \leftarrow\left\{\right.$ accept $^{<} \Longleftrightarrow$ accept $\left.^{>}\right\}$
while $T \neq \emptyset$ do pop ψ from T if $\boldsymbol{n o t} \bigwedge R \vDash \psi$ then $R \leftarrow R \cup\{\psi\}$ $T \leftarrow T \cup \mathrm{WP}(\psi)$
if $\phi \vDash \bigwedge R$ then return true
else return false

Loop invariants:

- If $c_{1} \llbracket \bigwedge(R \cup T) \rrbracket c_{2}$, then

$$
c_{1} \in F \Longleftrightarrow c_{2} \in F
$$

- If $c_{1} \llbracket \bigwedge(R \cup T) \rrbracket c_{2}$,

Optimizations - Pruning the bisimulation

Optimizations - Pruning the bisimulation

Example (Unreachable pairs)
Left buffer 0, right buffer 13.

Optimizations - Pruning the bisimulation

Example (Buffering pairs)
Left buffer 7, right buffer 7.

Optimizations - Pruning the bisimulation

Optimizations - Correctness

Idea: compute bisimulation with leaps instead.
$\sharp\left(c_{1}, c_{2}\right)=$ "no. of bits until next state change"
R is a bisimulation with leaps if for all $c_{1} R c_{2}$,

1. $c_{1} \in F$ if and only if $c_{2} \in F$
2. $\delta^{*}\left(c_{1}, w\right) R \delta^{*}\left(c_{2}, w\right)$ for all $w \in\{0,1\}^{\sharp\left(c_{1}, c_{2}\right)}$

This is an up-to technique in disguise!
Note: requires adjusting implementation of WP.

Implementation

Implementation - Side-stepping the termination checker

Implementation - Side-stepping the termination checker

Algorithm state as proof rules:
$\frac{\phi \vDash \bigwedge R}{\text { pre_bisim } \phi R[]}$ CLOSE $\frac{\bigwedge R \vDash \psi \quad \text { pre_bisim } \phi R T}{\text { pre_bisim } \phi R(\psi:: T)}$ SKIP

$$
\frac{\bigwedge R \not \forall \psi \quad \text { pre_bisim } \phi(\psi:: R)(T ; \mathrm{WP}(\psi))}{\text { pre_bisim } \phi R(\psi:: T)} \text { Extend }
$$

Lemma (Soundness)
If pre_bisim $\phi[]$ I, then all pairs in $\llbracket \phi \rrbracket$ are bisimilar.

Workflow: proof search for pre_bisim, applying exactly one of these three rules.

Implementation - Talk to SMT solver

Implementation - Talk to SMT solver

In theory:

- If T is empty, apply Done.
- If $\bigwedge R \vDash \psi$, apply Skip.
- If $\bigwedge R \not \vDash \psi$, apply Extend.

In practice:

- Massage entailment into fully quantified boolean formula.
- Custom plugin pretty-prints to SMT-LIB 2.0, asks solver.
- If SAT, admit $\bigwedge R \vDash \psi$ and apply Skip.
- If UNSAT, admit $\bigwedge R \not \forall \psi$ and apply Extend.

Implementation - Talk to SMT solver

Existing tools (Armand et al. 2011; Czajka and Kaliszyk 2018):

- Encode goal in SMT, translate result to Coq proof.
- No support for fully quantified boolean formulas.
- Very little control over eventual SMT query.

Implementation - Talk to SMT solver

Existing tools (Armand et al. 2011; Czajka and Kaliszyk 2018):

- Encode goal in SMT, translate result to Coq proof.
- No support for fully quantified boolean formulas.
- Very little control over eventual SMT query.
interp (R |= phi)

Implementation - Talk to SMT solver

Existing tools (Armand et al. 2011; Czajka and Kaliszyk 2018):

- Encode goal in SMT, translate result to Coq proof.
- No support for fully quantified boolean formulas.
- Very little control over eventual SMT query.
interp ($\mathrm{R} \mid=\mathrm{phi}$)
< vm_compute.

Implementation - Talk to SMT solver

Existing tools (Armand et al. 2011; Czajka and Kaliszyk 2018):

- Encode goal in SMT, translate result to Coq proof.
- No support for fully quantified boolean formulas.
- Very little control over eventual SMT query.
interp ($\mathrm{R} \mid=\mathrm{phi}$)
< vm_compute.
forall (x: bitvec n) (y: bitvec m), ...

Implementation - Talk to SMT solver

Existing tools (Armand et al. 2011; Czajka and Kaliszyk 2018):

- Encode goal in SMT, translate result to Coq proof.
- No support for fully quantified boolean formulas.
- Very little control over eventual SMT query.
interp ($\mathrm{R} \mid=\mathrm{phi}$)
< vm_compute.
forall (x: bitvec n) (y: bitvec m), ...
< hammer.

Implementation - Talk to SMT solver

Existing tools (Armand et al. 2011; Czajka and Kaliszyk 2018):

- Encode goal in SMT, translate result to Coq proof.
- No support for fully quantified boolean formulas.
- Very little control over eventual SMT query.
interp ($\mathrm{R} \mid=\mathrm{phi}$)
< vm_compute.
forall (x: bitvec n) (y: bitvec m), ...
< hammer.
Tactic failure: cannot solve this goal.

Implementation - Talk to SMT solver

Our approach:

- Series of verified simplifications in Gallina.
- Eventual goal is translated almost literally into SMT query.
- No back-translation - have to trust solver (for now).

Implementation - Talk to SMT solver

Our approach:

- Series of verified simplifications in Gallina.
- Eventual goal is translated almost literally into SMT query.
- No back-translation - have to trust solver (for now).

```
interp (R |= phi)
```


Implementation - Talk to SMT solver

Our approach:

- Series of verified simplifications in Gallina.
- Eventual goal is translated almost literally into SMT query.
- No back-translation - have to trust solver (for now).

```
interp (R |= phi)
< apply compile_formula.
```


Implementation - Talk to SMT solver

Our approach:

- Series of verified simplifications in Gallina.
- Eventual goal is translated almost literally into SMT query.
- No back-translation - have to trust solver (for now).

```
interp (R |= phi)
< apply compile_formula.
interp' (compile (R |= phi))
```


Implementation - Talk to SMT solver

Our approach:

- Series of verified simplifications in Gallina.
- Eventual goal is translated almost literally into SMT query.
- No back-translation - have to trust solver (for now).

```
interp (R |= phi)
< apply compile_formula.
interp' (compile (R |= phi))
< cbn compile.
```


Implementation - Talk to SMT solver

Our approach:

- Series of verified simplifications in Gallina.
- Eventual goal is translated almost literally into SMT query.
- No back-translation - have to trust solver (for now).

```
interp (R |= phi)
< apply compile_formula.
interp' (compile (R |= phi))
< cbn compile.
interp' (FForall (FExists (...))
```


Implementation - Talk to SMT solver

Our approach:

- Series of verified simplifications in Gallina.
- Eventual goal is translated almost literally into SMT query.
- No back-translation - have to trust solver (for now).

```
interp (R |= phi)
< apply compile_formula.
interp' (compile (R |= phi))
< cbn compile.
interp' (FForall (FExists (...))
< verify_interp; admit.
```


Implementation - Demo

Ceci n'est pas une diapo vide.

Implementation - Trusted computing base

Evaluation - Benchmarks

Automatically verifies common transformations:

- Speculative extraction / vectorization.
- Common prefix factorization
- General versus specialized TLV parsing.
- Early versus late filtering.

Extends to certain hyperproperties:

- Independence of initial header store.
- Correspondence between final stores.

Evaluation - Benchmarks

Leapfrog verifies many interesting properties of protocol parsers.

	Name	States	Branched (bits)	Total (bits)	Time (min)
$\frac{2}{2}$	St. rearrangement	5	8	136	0.12
	Variable-length	30	64	632	953.42
	Initialization	10	10	320	15.95
	Speculation	5	2	160	4.12
	Relational	6	64	1056	1.68
	Filtering	6	64	1056	1.18
	Edge	28	52	3184	528.38
	Service Provider	22	50	2536	1244.5
	Datacenter	30	242	2944	1387.95
	Enterprise	22	176	2144	217.93
	Tr. Validation	30	56	3148	746.2

Evaluation - Applicability study

parser-gen (Gibb et al. 2013) compiles parser to optimized implementation.

- Benchmarks: about 30 states each, huge store datastructure.
- Leapfrog can validate equivalence of input to output.

Lessons learned

- Finite automata can go the distance.
- Up-to techniques can be specialized.
- Programming in Coq is fun.

http://langsec.org/occupy/

Thank you!

Questions?

For your convenience:

- https://kap.pe/papers
- https://kap.pe/slides

References

R M．Armand et al．（2011）．＂A Modular Integration of SAT／SMT Solvers to Coq through Proof Witnesses＂．In：CPP， pp．135－150．DOI：10．1007／978－3－642－25379－9＿12．
－L．Czajka and C．Kaliszyk（2018）．＂Hammer for Coq： Automation for Dependent Type Theory＂．In：J．Autom． Reason．61．1－4，pp．423－453．Doi： 10．1007／s10817－018－9458－4．
國 G．Gibb et al．（2013）．＂Design principles for packet parsers＂． In：ANCS，pp．13－24．DOI：10．1109／ANCS．2013．6665172．
呞 J．Liu et al．（2018）．＂p4v：practical verification for programmable data planes＂．In：S／GCOMM，pp．490－503．DOI： 10．1145／3230543．3230582．
國 M．C．Neves et al．（2018）．＂Verification of P4 programs in feasible time using assertions＂．In：CoNEXT，pp．73－85．DOI： 10．1145／3281411．3281421．
囯 B．Tian et al．（2021）．＂Aquila：a practically usable verification system for production－scale programmable data planes＂．In： SIGCOMM，pp．17－32．DOi：10．1145／3452296．3472937．

