Leapfrog: Certified Equivalence for Protocol Parsers

Tobias Kappé

ILLC, University of Amsterdam

June 28, 2022

Joint work with folks at Cornell

Ryan Doenges

John Sarracino

Nate Foster

Greg Morrisett

```
01000111011011110010
                       00000110001001101001
                       01100111001000000111
                       00100110010101100100
                           (and metadata)
header baby_ip {
 bit<8> src;
                   Success
 bit<8> dst;
 bit<4> proto;
  (and metadata)
```


Verification frameworks for parsers exist:

- ▶ p4v (Liu et al. 2018)
- ► Aquila (Tian et al. 2021)
- ► Neves et al. 2018

Verification frameworks for parsers exist:

- ▶ p4v (Liu et al. 2018)
- Aquila (Tian et al. 2021)
- ► Neves et al. 2018

Great works...but room for improvement:

Only functional properties are verified.

Verification frameworks for parsers exist:

- ▶ p4v (Liu et al. 2018)
- Aquila (Tian et al. 2021)
- ► Neves et al. 2018

Great works...but room for improvement:

- Only functional properties are verified.
- No reusable certificate is produced.

Verification frameworks for parsers exist:

- ▶ p4v (Liu et al. 2018)
- Aquila (Tian et al. 2021)
- ► Neves et al. 2018

Great works...but room for improvement:

- Only functional properties are verified.
- ▶ No reusable certificate is produced.
- Rely on (trusted) verification to IR.

Comparing parsers

Comparing parsers

Comparing parsers

▶ P4 automata: a syntax and semantics for protocol parsers.

- ▶ P4 automata: a syntax and semantics for protocol parsers.
- ► Algorithm to check (hyperproperties like) language equivalence.

- ▶ P4 automata: a syntax and semantics for protocol parsers.
- Algorithm to check (hyperproperties like) language equivalence.
- ▶ Implementation of algorithm in Coq + SMT solver.

- ▶ P4 automata: a syntax and semantics for protocol parsers.
- Algorithm to check (hyperproperties like) language equivalence.
- ► Implementation of algorithm in Coq + SMT solver.
- ▶ Proof of soundness (in Coq) and completeness (on paper).

Running Example

Parameters: states Q, headers H, header sizes sz : $H \to \mathbb{N}$.

$$c = \langle q_1, s, \epsilon \rangle$$

$$c = \langle q_1, s, 0 \rangle$$

$$c = \langle q_1, s, 01 \rangle$$

$$c = \langle q_1, s, 01 \cdots \rangle$$

$$c = \langle q_1, s, 01 \cdots 0 \rangle$$

$$c = \langle q_1, s[01 \cdots 0/mpls], 01 \cdots 0 \rangle$$

$$c = \langle q_2, s[01 \cdots 0/mpls], 01 \cdots 0 \rangle$$

$$c = \langle q_2, s[\mathtt{O1} \cdots \mathtt{O/mpls}], \epsilon
angle$$

Formalization

Every P4 automaton gives rise to a DFA $\langle C, \delta, F \rangle$.

Formalization

Every P4 automaton gives rise to a DFA $\langle C, \delta, F \rangle$.

Definition (Bisimulation)

A binary relation R is a bisimulation if for all $c_1 R c_2$,

- 1. $c_1 \in F$ if and only if $c_2 \in F$
- 2. $\delta(c_1, b) R \delta(c_2, b)$ for all b

Formalization

Every P4 automaton gives rise to a DFA $\langle C, \delta, F \rangle$.

Definition (Bisimulation)

A binary relation R is a bisimulation if for all $c_1 R c_2$,

- 1. $c_1 \in F$ if and only if $c_2 \in F$
- 2. $\delta(c_1, b) R \delta(c_2, b)$ for all b

Definition (Equivalence)

 P_1 and P_2 are *equivalent* if there exists a bisimulation that relates their start states.

Challenge

Problem: $|C| \ge 10^{37}$ for reference MPLS parser.

Two-pronged solution:

- ► Symbolic representation + SMT solving.
- Up-to techniques to skip buffering.

Symbolic representation

First-order logic with semantics $\llbracket \phi \rrbracket \subseteq C \times C$.

Examples

 $lackbox{} \phi = q_1^<$ means "the left state is q_1 "

Symbolic representation

First-order logic with semantics $\llbracket \phi \rrbracket \subseteq C \times C$.

Examples

- $ightharpoonup \phi = q_1^<$ means "the left state is q_1 "
- $ightharpoonup \phi = 10^{>}$ means "the right buffer has 10 bits"

Symbolic representation

First-order logic with semantics $\llbracket \phi \rrbracket \subseteq C \times C$.

Examples

- $ightharpoonup \phi = q_1^<$ means "the left state is q_1 "
- $ightharpoonup \phi = 10^{>}$ means "the right buffer has 10 bits"
- ▶ mpls [24 : 24] = 1 means "the 24th bit of the mpls header in the left store is 1"

Symbolic representation

First-order logic with semantics $\llbracket \phi \rrbracket \subseteq C \times C$.

Examples

- $ightharpoonup \phi = q_1^<$ means "the left state is q_1 "
- lacktriangledown $\phi=10^{>}$ means "the right buffer has 10 bits"
- ▶ mpls $^{<}[24:24] = 1$ means "the 24th bit of the mpls header in the left store is 1"

Definition (Symbolic bisimulation)

If $\llbracket \phi \rrbracket$ is a bisimulation, then ϕ is a symbolic bisimulation.

Equivalence checking — intuition

Equivalence checking — intuition

Equivalence checking — intuition


```
R \leftarrow \emptyset
T \leftarrow \{\mathsf{accept}^{<} \iff \mathsf{accept}^{>}\}
while T \neq \emptyset do
       pop \psi from T
if not \bigwedge R \vDash \psi then  R \leftarrow R \cup \{\psi\}  T \leftarrow T \cup \mathsf{WP}(\psi) 
if \phi \models \bigwedge R then
       return true
else
       return false
```

```
R \leftarrow \emptyset
      T \leftarrow \{\mathsf{accept}^{<} \iff \mathsf{accept}^{>}\}
   while T \neq \emptyset do
                                                                              pop \psi from T
      if not \bigwedge R \vDash \psi then R \leftarrow R \cup \{\psi\}T \leftarrow T \cup \mathsf{WP}(\psi)
if \phi \models \bigwedge R then
                                                                              return true
   else
                                                                              return false
                                                                              Loop termination: either

ightharpoonup 
big| 
bightharpoonup 
bighth

ightharpoonup 
vert 
vert
```

T shrinks.

```
R \leftarrow \emptyset
T \leftarrow \{\mathsf{accept}^{<} \iff \mathsf{accept}^{>}\}
while T \neq \emptyset do
     pop \psi from T
    if not \bigwedge R \vDash \psi then
if \phi \models \bigwedge R then
     return true
else
     return false
     Loop invariants:
```

```
R \leftarrow \emptyset
T \leftarrow \{\mathsf{accept}^{<} \iff \mathsf{accept}^{>}\}
while T \neq \emptyset do
     pop \psi from T
    if not \bigwedge R \vDash \psi then
if \phi \models \bigwedge R then
     return true
else
     return false
     Loop invariants:
        ▶ If c_1 \llbracket \bigwedge (R \cup T) \rrbracket c_2,
            then
            c_1 \in F \iff c_2 \in F.
```

Equivalence checking — algorithm $R \leftarrow \emptyset$

while
$$T \neq \emptyset$$
 do
$$\begin{array}{c|c} & \text{pop } \psi \text{ from } T \\ & \text{if not } \bigwedge R \vDash \psi \text{ then} \\ & R \leftarrow R \cup \{\psi\} \\ & T \leftarrow T \cup \mathsf{WP}(\psi) \\ & \text{if } \phi \vDash \bigwedge R \text{ then} \\ & \text{return true} \\ & \text{else} \\ & \text{return false} \\ & \text{Loop invariants:} \\ & \blacktriangleright \text{ If } c_1 \ \llbracket \bigwedge (R \cup T) \rrbracket \ c_2, \\ & \text{then} \\ & c_1 \in F \iff c_2 \in F. \\ & \blacktriangleright \text{ If } c_1 \ \llbracket \bigwedge (R \cup T) \rrbracket \ c_2, \\ & \text{then} \\ & \text{lf } c_1 \ \llbracket \bigwedge (R \cup T) \rrbracket \ c_2, \\ & \text{then} \\ & \text{lf } c_1 \ \llbracket \bigwedge (R \cup T) \rrbracket \ c_2, \\ & \text{lf } c_2 \ \llbracket \bigwedge (R \cup T) \rrbracket \ c_2, \\ & \text{lf } c_2 \ \llbracket \bigwedge (R \cup T) \rrbracket \ c_2, \\ & \text{lf } c_3 \ \llbracket \bigwedge (R \cup T) \rrbracket \ c_2, \\ & \text{lf } c_4 \ \llbracket \bigwedge (R \cup T) \rrbracket \ c_2, \\ & \text{lf } c_5 \ \llbracket \bigwedge (R \cup T) \rrbracket \ c_2, \\ & \text{lf } c_5 \ \llbracket \bigwedge (R \cup T) \rrbracket \ c_5, \\ & \text{lf } c_5 \ \llbracket \bigwedge (R \cup T) \rrbracket \ c_5, \\ & \text{lf } c_5 \ \llbracket \bigwedge (R \cup T) \rrbracket \ c_5, \\ & \text{lf } c_5 \ \llbracket \bigwedge (R \cup T) \rrbracket \ c_5, \\ & \text{lf } c_5 \ \llbracket \bigwedge (R \cup T) \rrbracket \ c_5, \\ & \text{lf } c_5 \ \llbracket \bigwedge (R \cup T) \rrbracket \ c_5, \\ & \text{lf } c_5 \ \llbracket \bigwedge (R \cup T) \rrbracket \ c_5, \\ & \text{lf } c_5 \ \llbracket \bigwedge (R \cup T) \rrbracket \ c_5, \\ & \text{lf } c_5 \ \llbracket \bigwedge (R \cup T) \rrbracket \ c_5, \\ & \text{lf } c_5 \ \llbracket \bigwedge (R \cup T) \rrbracket \ c_5, \\ & \text{lf } c_5 \ \llbracket \bigwedge (R \cup T) \rrbracket \ c_5, \\ & \text{lf } c_5 \ \llbracket \bigwedge (R \cup T) \rrbracket \ c_5, \\ & \text{lf } c_5 \ \llbracket \bigwedge (R \cup T) \rrbracket \ c_5, \\ & \text{lf } c_5 \ \llbracket \bigwedge (R \cup T) \rrbracket \ c_5, \\ & \text{lf } c_5 \ \llbracket \bigwedge (R \cup T) \rrbracket \ c_5, \\ & \text{lf } c_5 \ \llbracket \bigwedge (R \cup T) \rrbracket \ c_5, \\ & \text{lf } c_5 \ \llbracket \bigwedge (R \cup T) \rrbracket \ c_5, \\ & \text{lf } c_5 \ \llbracket \bigwedge (R \cup T) \rrbracket \ c_5, \\ & \text{lf } c_5 \ \llbracket \bigwedge (R \cup T) \rrbracket \ c_5, \\ & \text{lf } c_5 \ \llbracket \bigwedge (R \cup T) \rrbracket \ c_5, \\ & \text{lf } c_5 \ \llbracket \bigwedge (R \cup T) \rrbracket \ c_5, \\ & \text{lf } c_5 \ \llbracket \bigwedge (R \cup T) \rrbracket \ c_5, \\ & \text{lf } c_5 \ \llbracket \bigwedge (R \cup T) \rrbracket \ c_5, \\ & \text{lf } c_5 \ \llbracket \bigwedge (R \cup T) \rrbracket \ c_5, \\ & \text{lf } c_5 \ \llbracket \bigwedge (R \cup T) \rrbracket \ c_5, \\ & \text{lf } c_5 \ \llbracket \bigwedge (R \cup T) \rrbracket \ c_5, \\ & \text{lf } c_5 \ \llbracket \bigwedge (R \cup T) \rrbracket \ c_5 \ \llbracket \bigwedge (R \cup T) \rrbracket \ c_5 \ \llbracket \bigwedge (R \cup T) \rrbracket \ c_5 \ \llbracket \bigwedge (R \cup T) \rrbracket \ c_5 \ \llbracket \bigwedge (R \cup T) \rrbracket \ c_5 \ \llbracket \bigwedge (R \cup T) \rrbracket \ c_5 \ \llbracket \bigwedge (R \cup T) \rrbracket \ c_5 \ \llbracket \bigwedge (R \cup T) \rrbracket \ c_5 \ \llbracket \bigwedge (R \cup T) \rrbracket \ c_5 \ \llbracket \bigwedge (R \cup T) \rrbracket \ c_5 \ \lceil \bigwedge (R \cup T) \rrbracket \ c_5 \ \lceil \bigwedge (R \cup T) \rrbracket \ c_5 \ \lceil \bigwedge (R \cup T) \rrbracket \ c_5 \ \lceil \bigwedge (R \cup T) \rrbracket \ c_5 \ \lceil \bigwedge (R \cup T) \rrbracket \ c_5 \ \lceil \bigwedge (R \cup T) \rrbracket \ c_5 \ \lceil \bigwedge (R \cup T) \rrbracket \ c_5 \ \lceil \bigwedge (R \cup T) \rrbracket \ c_5 \ \lceil \bigwedge (R \cup T) \rrbracket \$$

 $T \leftarrow \{\mathsf{accept}^{<} \iff \mathsf{accept}^{>}\}$

Equivalence checking — algorithm $R \leftarrow \emptyset$

while
$$T \neq \emptyset$$
 do
$$\begin{array}{c|c} & \text{pop } \psi \text{ from } T \\ & \text{if not } \bigwedge R \vDash \psi \text{ then} \\ & R \leftarrow R \cup \{\psi\} \\ & T \leftarrow T \cup \mathsf{WP}(\psi) \\ & \text{if } \phi \vDash \bigwedge R \text{ then} \\ & \text{return true} \\ & \text{else} \\ & \text{return false} \\ & \text{Loop invariants:} \\ & \blacktriangleright \text{ If } c_1 \ \llbracket \bigwedge (R \cup T) \rrbracket \ c_2, \\ & \text{then} \\ & c_1 \in F \iff c_2 \in F. \\ & \blacktriangleright \text{ If } c_1 \ \llbracket \bigwedge (R \cup T) \rrbracket \ c_2, \\ & \text{then} \\ & \text{lf } c_1 \ \llbracket \bigwedge (R \cup T) \rrbracket \ c_2, \\ & \text{then} \\ & \text{lf } c_1 \ \llbracket \bigwedge (R \cup T) \rrbracket \ c_2, \\ & \text{lf } c_2 \ \llbracket \bigwedge (R \cup T) \rrbracket \ c_2, \\ & \text{lf } c_2 \ \llbracket \bigwedge (R \cup T) \rrbracket \ c_2, \\ & \text{lf } c_3 \ \llbracket \bigwedge (R \cup T) \rrbracket \ c_2, \\ & \text{lf } c_4 \ \llbracket \bigwedge (R \cup T) \rrbracket \ c_2, \\ & \text{lf } c_5 \ \llbracket \bigwedge (R \cup T) \rrbracket \ c_2, \\ & \text{lf } c_5 \ \llbracket \bigwedge (R \cup T) \rrbracket \ c_5, \\ & \text{lf } c_5 \ \llbracket \bigwedge (R \cup T) \rrbracket \ c_5, \\ & \text{lf } c_5 \ \llbracket \bigwedge (R \cup T) \rrbracket \ c_5, \\ & \text{lf } c_5 \ \llbracket \bigwedge (R \cup T) \rrbracket \ c_5, \\ & \text{lf } c_5 \ \llbracket \bigwedge (R \cup T) \rrbracket \ c_5, \\ & \text{lf } c_5 \ \llbracket \bigwedge (R \cup T) \rrbracket \ c_5, \\ & \text{lf } c_5 \ \llbracket \bigwedge (R \cup T) \rrbracket \ c_5, \\ & \text{lf } c_5 \ \llbracket \bigwedge (R \cup T) \rrbracket \ c_5, \\ & \text{lf } c_5 \ \llbracket \bigwedge (R \cup T) \rrbracket \ c_5, \\ & \text{lf } c_5 \ \llbracket \bigwedge (R \cup T) \rrbracket \ c_5, \\ & \text{lf } c_5 \ \llbracket \bigwedge (R \cup T) \rrbracket \ c_5, \\ & \text{lf } c_5 \ \llbracket \bigwedge (R \cup T) \rrbracket \ c_5, \\ & \text{lf } c_5 \ \llbracket \bigwedge (R \cup T) \rrbracket \ c_5, \\ & \text{lf } c_5 \ \llbracket \bigwedge (R \cup T) \rrbracket \ c_5, \\ & \text{lf } c_5 \ \llbracket \bigwedge (R \cup T) \rrbracket \ c_5, \\ & \text{lf } c_5 \ \llbracket \bigwedge (R \cup T) \rrbracket \ c_5, \\ & \text{lf } c_5 \ \llbracket \bigwedge (R \cup T) \rrbracket \ c_5, \\ & \text{lf } c_5 \ \llbracket \bigwedge (R \cup T) \rrbracket \ c_5, \\ & \text{lf } c_5 \ \llbracket \bigwedge (R \cup T) \rrbracket \ c_5, \\ & \text{lf } c_5 \ \llbracket \bigwedge (R \cup T) \rrbracket \ c_5, \\ & \text{lf } c_5 \ \llbracket \bigwedge (R \cup T) \rrbracket \ c_5, \\ & \text{lf } c_5 \ \llbracket \bigwedge (R \cup T) \rrbracket \ c_5, \\ & \text{lf } c_5 \ \llbracket \bigwedge (R \cup T) \rrbracket \ c_5, \\ & \text{lf } c_5 \ \llbracket \bigwedge (R \cup T) \rrbracket \ c_5, \\ & \text{lf } c_5 \ \llbracket \bigwedge (R \cup T) \rrbracket \ c_5, \\ & \text{lf } c_5 \ \llbracket \bigwedge (R \cup T) \rrbracket \ c_5, \\ & \text{lf } c_5 \ \llbracket \bigwedge (R \cup T) \rrbracket \ c_5 \ \llbracket \bigwedge (R \cup T) \rrbracket \ c_5 \ \llbracket \bigwedge (R \cup T) \rrbracket \ c_5 \ \llbracket \bigwedge (R \cup T) \rrbracket \ c_5 \ \llbracket \bigwedge (R \cup T) \rrbracket \ c_5 \ \llbracket \bigwedge (R \cup T) \rrbracket \ c_5 \ \llbracket \bigwedge (R \cup T) \rrbracket \ c_5 \ \llbracket \bigwedge (R \cup T) \rrbracket \ c_5 \ \llbracket \bigwedge (R \cup T) \rrbracket \ c_5 \ \llbracket \bigwedge (R \cup T) \rrbracket \ c_5 \ \lceil \bigwedge (R \cup T) \rrbracket \ c_5 \ \lceil \bigwedge (R \cup T) \rrbracket \ c_5 \ \lceil \bigwedge (R \cup T) \rrbracket \ c_5 \ \lceil \bigwedge (R \cup T) \rrbracket \ c_5 \ \lceil \bigwedge (R \cup T) \rrbracket \ c_5 \ \lceil \bigwedge (R \cup T) \rrbracket \ c_5 \ \lceil \bigwedge (R \cup T) \rrbracket \ c_5 \ \lceil \bigwedge (R \cup T) \rrbracket \ c_5 \ \lceil \bigwedge (R \cup T) \rrbracket \$$

 $T \leftarrow \{\mathsf{accept}^{<} \iff \mathsf{accept}^{>}\}$

Equivalence checking — algorithm $R \leftarrow \emptyset$

while
$$T \neq \emptyset$$
 do
$$\begin{array}{c|c} & \text{pop } \psi \text{ from } T \\ & \text{if not } \bigwedge R \vDash \psi \text{ then} \\ & R \leftarrow R \cup \{\psi\} \\ & T \leftarrow T \cup \mathsf{WP}(\psi) \\ & \text{if } \phi \vDash \bigwedge R \text{ then} \\ & \text{return true} \\ & \text{else} \\ & \text{return false} \\ & \text{Loop invariants:} \\ & \blacktriangleright \text{ If } c_1 \ \llbracket \bigwedge (R \cup T) \rrbracket \ c_2, \\ & \text{then} \\ & c_1 \in F \iff c_2 \in F. \\ & \blacktriangleright \text{ If } c_1 \ \llbracket \bigwedge (R \cup T) \rrbracket \ c_2, \\ & \text{then} \\ & \text{lf } c_1 \ \llbracket \bigwedge (R \cup T) \rrbracket \ c_2, \\ & \text{then} \\ & \text{lf } c_1 \ \llbracket \bigwedge (R \cup T) \rrbracket \ c_2, \\ & \text{lf } c_2 \ \llbracket \bigwedge (R \cup T) \rrbracket \ c_2, \\ & \text{lf } c_2 \ \llbracket \bigwedge (R \cup T) \rrbracket \ c_2, \\ & \text{lf } c_3 \ \llbracket \bigwedge (R \cup T) \rrbracket \ c_2, \\ & \text{lf } c_4 \ \llbracket \bigwedge (R \cup T) \rrbracket \ c_2, \\ & \text{lf } c_5 \ \llbracket \bigwedge (R \cup T) \rrbracket \ c_2, \\ & \text{lf } c_5 \ \llbracket \bigwedge (R \cup T) \rrbracket \ c_5, \\ & \text{lf } c_5 \ \llbracket \bigwedge (R \cup T) \rrbracket \ c_5, \\ & \text{lf } c_5 \ \llbracket \bigwedge (R \cup T) \rrbracket \ c_5, \\ & \text{lf } c_5 \ \llbracket \bigwedge (R \cup T) \rrbracket \ c_5, \\ & \text{lf } c_5 \ \llbracket \bigwedge (R \cup T) \rrbracket \ c_5, \\ & \text{lf } c_5 \ \llbracket \bigwedge (R \cup T) \rrbracket \ c_5, \\ & \text{lf } c_5 \ \llbracket \bigwedge (R \cup T) \rrbracket \ c_5, \\ & \text{lf } c_5 \ \llbracket \bigwedge (R \cup T) \rrbracket \ c_5, \\ & \text{lf } c_5 \ \llbracket \bigwedge (R \cup T) \rrbracket \ c_5, \\ & \text{lf } c_5 \ \llbracket \bigwedge (R \cup T) \rrbracket \ c_5, \\ & \text{lf } c_5 \ \llbracket \bigwedge (R \cup T) \rrbracket \ c_5, \\ & \text{lf } c_5 \ \llbracket \bigwedge (R \cup T) \rrbracket \ c_5, \\ & \text{lf } c_5 \ \llbracket \bigwedge (R \cup T) \rrbracket \ c_5, \\ & \text{lf } c_5 \ \llbracket \bigwedge (R \cup T) \rrbracket \ c_5, \\ & \text{lf } c_5 \ \llbracket \bigwedge (R \cup T) \rrbracket \ c_5, \\ & \text{lf } c_5 \ \llbracket \bigwedge (R \cup T) \rrbracket \ c_5, \\ & \text{lf } c_5 \ \llbracket \bigwedge (R \cup T) \rrbracket \ c_5, \\ & \text{lf } c_5 \ \llbracket \bigwedge (R \cup T) \rrbracket \ c_5, \\ & \text{lf } c_5 \ \llbracket \bigwedge (R \cup T) \rrbracket \ c_5, \\ & \text{lf } c_5 \ \llbracket \bigwedge (R \cup T) \rrbracket \ c_5, \\ & \text{lf } c_5 \ \llbracket \bigwedge (R \cup T) \rrbracket \ c_5, \\ & \text{lf } c_5 \ \llbracket \bigwedge (R \cup T) \rrbracket \ c_5, \\ & \text{lf } c_5 \ \llbracket \bigwedge (R \cup T) \rrbracket \ c_5, \\ & \text{lf } c_5 \ \llbracket \bigwedge (R \cup T) \rrbracket \ c_5, \\ & \text{lf } c_5 \ \llbracket \bigwedge (R \cup T) \rrbracket \ c_5, \\ & \text{lf } c_5 \ \llbracket \bigwedge (R \cup T) \rrbracket \ c_5, \\ & \text{lf } c_5 \ \llbracket \bigwedge (R \cup T) \rrbracket \ c_5 \ \llbracket \bigwedge (R \cup T) \rrbracket \ c_5 \ \llbracket \bigwedge (R \cup T) \rrbracket \ c_5 \ \llbracket \bigwedge (R \cup T) \rrbracket \ c_5 \ \llbracket \bigwedge (R \cup T) \rrbracket \ c_5 \ \llbracket \bigwedge (R \cup T) \rrbracket \ c_5 \ \llbracket \bigwedge (R \cup T) \rrbracket \ c_5 \ \llbracket \bigwedge (R \cup T) \rrbracket \ c_5 \ \llbracket \bigwedge (R \cup T) \rrbracket \ c_5 \ \llbracket \bigwedge (R \cup T) \rrbracket \ c_5 \ \lceil \bigwedge (R \cup T) \rrbracket \ c_5 \ \lceil \bigwedge (R \cup T) \rrbracket \ c_5 \ \lceil \bigwedge (R \cup T) \rrbracket \ c_5 \ \lceil \bigwedge (R \cup T) \rrbracket \ c_5 \ \lceil \bigwedge (R \cup T) \rrbracket \ c_5 \ \lceil \bigwedge (R \cup T) \rrbracket \ c_5 \ \lceil \bigwedge (R \cup T) \rrbracket \ c_5 \ \lceil \bigwedge (R \cup T) \rrbracket \ c_5 \ \lceil \bigwedge (R \cup T) \rrbracket \$$

 $T \leftarrow \{\mathsf{accept}^{<} \iff \mathsf{accept}^{>}\}$

Example (Unreachable pairs) Left buffer 0, right buffer 13.

Example (Buffering pairs) Left buffer 7, right buffer 7.

Optimizations — Correctness

Idea: compute bisimulation with leaps instead.

$$\sharp(c_1,c_2)=$$
 "no. of bits until next state change"

R is a bisimulation with leaps if for all $c_1 R c_2$,

- 1. $c_1 \in F$ if and only if $c_2 \in F$
- 2. $\delta^*(c_1, w) R \delta^*(c_2, w)$ for all $w \in \{0, 1\}^{\sharp(c_1, c_2)}$

This is an up-to technique in disguise!

Note: requires adjusting implementation of WP.

Implementation

Implementation — Side-stepping the termination checker

Implementation — Side-stepping the termination checker

Algorithm state as proof rules:

$$\frac{\phi \vDash \bigwedge R}{\text{pre_bisim } \phi \; R \; []} \; \overset{\text{CLOSE}}{=} \; \frac{\bigwedge R \vDash \psi \quad \text{pre_bisim } \phi \; R \; T}{\text{pre_bisim } \phi \; R \; (\psi :: T)} \; \overset{\text{SKIP}}{=} \; \frac{\bigwedge R \nvDash \psi \quad \text{pre_bisim } \phi \; (\psi :: R) \; (T; \mathsf{WP}(\psi))}{\text{pre_bisim } \phi \; R \; (\psi :: T)} \; \overset{\text{EXTEND}}{=} \; \frac{}{} \; \frac$$

Lemma (Soundness)

If $pre_bisim \phi$ [] I, then all pairs in $\llbracket \phi \rrbracket$ are bisimilar.

Workflow: proof search for pre_bisim, applying exactly one of these three rules.

In theory:

- ▶ If *T* is empty, apply Done.
- ▶ If $\bigwedge R \vDash \psi$, apply Skip.
- ▶ If $\bigwedge R \not\models \psi$, apply Extend.

In practice:

- Massage entailment into fully quantified boolean formula.
- Custom plugin pretty-prints to SMT-LIB 2.0, asks solver.
- ▶ If SAT, admit $\bigwedge R \vDash \psi$ and apply Skip.
- ▶ If UNSAT, admit $\bigwedge R \not\vDash \psi$ and apply Extend.

- ▶ Encode goal in SMT, translate result to Coq proof.
- No support for fully quantified boolean formulas.
- Very little control over eventual SMT query.

- ▶ Encode goal in SMT, translate result to Coq proof.
- ▶ No support for fully quantified boolean formulas.
- Very little control over eventual SMT query.

```
interp (R |= phi)
```

- ▶ Encode goal in SMT, translate result to Coq proof.
- ▶ No support for fully quantified boolean formulas.
- Very little control over eventual SMT query.

```
interp (R |= phi)
< vm_compute.</pre>
```

- ▶ Encode goal in SMT, translate result to Coq proof.
- ▶ No support for fully quantified boolean formulas.
- Very little control over eventual SMT query.

```
interp (R |= phi)
< vm_compute.
forall (x: bitvec n) (y: bitvec m), ...</pre>
```

- ▶ Encode goal in SMT, translate result to Coq proof.
- No support for fully quantified boolean formulas.
- Very little control over eventual SMT query.

```
interp (R |= phi)
< vm_compute.
forall (x: bitvec n) (y: bitvec m), ...
< hammer.</pre>
```

- ▶ Encode goal in SMT, translate result to Coq proof.
- No support for fully quantified boolean formulas.
- Very little control over eventual SMT query.

```
interp (R |= phi)
< vm_compute.
forall (x: bitvec n) (y: bitvec m), ...
< hammer.
Tactic failure: cannot solve this goal.</pre>
```

- Series of verified simplifications in Gallina.
- Eventual goal is translated almost literally into SMT query.
- No back-translation have to trust solver (for now).

- Series of verified simplifications in Gallina.
- Eventual goal is translated almost literally into SMT query.
- ▶ No back-translation have to trust solver (for now).

```
interp (R |= phi)
```

- Series of verified simplifications in Gallina.
- Eventual goal is translated almost literally into SMT query.
- ▶ No back-translation have to trust solver (for now).

```
interp (R |= phi)
< apply compile_formula.</pre>
```

- Series of verified simplifications in Gallina.
- Eventual goal is translated almost literally into SMT query.
- ▶ No back-translation have to trust solver (for now).

```
interp (R |= phi)
< apply compile_formula.
interp' (compile (R |= phi))</pre>
```

- Series of verified simplifications in Gallina.
- Eventual goal is translated almost literally into SMT query.
- ▶ No back-translation have to trust solver (for now).

```
interp (R |= phi)
< apply compile_formula.
interp' (compile (R |= phi))
< cbn compile.</pre>
```

- Series of verified simplifications in Gallina.
- Eventual goal is translated almost literally into SMT query.
- ▶ No back-translation have to trust solver (for now).

```
interp (R |= phi)
< apply compile_formula.
interp' (compile (R |= phi))
< cbn compile.
interp' (FForall (FExists (...))</pre>
```

- Series of verified simplifications in Gallina.
- Eventual goal is translated almost literally into SMT query.
- ▶ No back-translation have to trust solver (for now).

```
interp (R |= phi)
< apply compile_formula.
interp' (compile (R |= phi))
< cbn compile.
interp' (FForall (FExists (...))
< verify_interp; admit.</pre>
```

Implementation — Demo

Ceci n'est pas une diapo vide.

Implementation — Trusted computing base

Evaluation — Benchmarks

Automatically verifies common transformations:

- ► Speculative extraction / vectorization.
- Common prefix factorization
- General versus specialized TLV parsing.
- Early versus late filtering.

Extends to certain hyperproperties:

- ► Independence of initial header store.
- Correspondence between final stores.

Evaluation — Benchmarks

Leapfrog verifies many interesting properties of protocol parsers.

	Name	States	Branched (bits)	T otal (bits)	Time (min)
Utility	St. rearrangement	5	8	136	0.12
	Variable-length	30	64	632	953.42
	Initialization	10	10	320	15.95
	Speculation	5	2	160	4.12
	Relational	6	64	1056	1.68
	Filtering	6	64	1056	1.18
Applicability	Edge	28	52	3184	528.38
	Service Provider	22	50	2536	1244.5
	Datacenter	30	242	2944	1387.95
	Enterprise	22	176	2144	217.93
	Tr. Validation	30	56	3148	746.2

Evaluation — Applicability study

parser-gen (Gibb et al. 2013) compiles parser to optimized implementation.

- ▶ Benchmarks: about 30 states each, *huge* store datastructure.
- Leapfrog can validate equivalence of input to output.

Lessons learned

- Finite automata can go the distance.
- Up-to techniques can be specialized.
- ▶ Programming in Coq is fun.

http://langsec.org/occupy/

Thank you!

Questions?

For your convenience:

- https://kap.pe/papers
- ▶ https://kap.pe/slides

References

- M. Armand et al. (2011). "A Modular Integration of SAT/SMT Solvers to Coq through Proof Witnesses". In: *CPP*, pp. 135–150. DOI: 10.1007/978-3-642-25379-9_12.
- L. Czajka and C. Kaliszyk (2018). "Hammer for Coq: Automation for Dependent Type Theory". In: *J. Autom. Reason.* 61.1-4, pp. 423–453. DOI: 10.1007/s10817-018-9458-4.
- G. Gibb et al. (2013). "Design principles for packet parsers". In: *ANCS*, pp. 13–24. DOI: 10.1109/ANCS.2013.6665172.
- J. Liu et al. (2018). "p4v: practical verification for programmable data planes". In: *SIGCOMM*, pp. 490–503. DOI: 10.1145/3230543.3230582.
- M. C. Neves et al. (2018). "Verification of P4 programs in feasible time using assertions". In: *CoNEXT*, pp. 73–85. DOI: 10.1145/3281411.3281421.
- B. Tian et al. (2021). "Aquila: a practically usable verification system for production-scale programmable data planes". In: *SIGCOMM*, pp. 17–32. DOI: 10.1145/3452296.3472937.