Leapfrog:
 Certified Equivalence for Protocol Parsers

Tobias Kappé

Mathematical \& Computational Logic
ILLC Midwinter Colloquium
December 14th, 2021

Joint work with folks at Cornell

Ryan Doenges

Nate Foster

John Sarracino

Packet parsing

01000111011011110010
00000110001001101001
01100111001000000111
00100110010101100100

Packet parsing

01000111011011110010
00000110001001101001
01100111001000000111
00100110010101100100

Packet parsing

Packet parsing

Updating the parser

Updating the parser

Updating the parser

$\stackrel{?}{\approx}$

Running Example

Semantics

Semantics

Challenge

Definition (Bisimulation)

A bisimulation is a relation R on configurations such that for all $c_{1} R c_{2}$:

1. c_{1} is accepting if and only if c_{2} is accepting
2. if $c_{1} \xrightarrow{b} c_{1}^{\prime}$ and $c_{2} \xrightarrow{b} c_{2}^{\prime}$, then $c_{1}^{\prime} R c_{2}^{\prime}$.

Challenge

Definition (Bisimulation)

A bisimulation is a relation R on configurations such that for all $c_{1} R c_{2}$:

1. c_{1} is accepting if and only if c_{2} is accepting
2. if $c_{1} \xrightarrow{b} c_{1}^{\prime}$ and $c_{2} \xrightarrow{b} c_{2}^{\prime}$, then $c_{1}^{\prime} R c_{2}^{\prime}$.

Lemma (Bisimilarity characterizes language equivalence) $L\left(c_{1}\right)=L\left(c_{2}\right)$ if and only if $c_{1} R c_{2}$ for some bisimulation R.

Challenge

Definition (Bisimulation)

A bisimulation is a relation R on configurations such that for all $c_{1} R c_{2}$:

1. c_{1} is accepting if and only if c_{2} is accepting
2. if $c_{1} \xrightarrow{b} c_{1}^{\prime}$ and $c_{2} \xrightarrow{b} c_{2}^{\prime}$, then $c_{1}^{\prime} R c_{2}^{\prime}$.

Lemma (Bisimilarity characterizes language equivalence) $L\left(c_{1}\right)=L\left(c_{2}\right)$ if and only if $c_{1} R c_{2}$ for some bisimulation R.

Problem: |configurations $\mid \geq 10^{37}$ for reference MPLS parser.

- Symbolic representation + SMT solving.
- "Up-to" techniques to skip buffering.

Symbolic representation

First-order logic with semantics $\llbracket \phi \rrbracket \subseteq$ configurations \times configurations.

Examples

- $\phi=q_{1}^{<}$means "the left state is $q_{1}{ }^{\prime \prime}$

Symbolic representation

First-order logic with semantics $\llbracket \phi \rrbracket \subseteq$ configurations \times configurations.

Examples

- $\phi=q_{1}^{<}$means "the left state is q_{1} "
$\checkmark \operatorname{mpl} \mathrm{s}^{<}[24: 24]=1$ means "the 24 th bit of mpls (on the left) is 1 "

Symbolic representation

First-order logic with semantics $\llbracket \phi \rrbracket \subseteq$ configurations \times configurations.

Examples

- $\phi=q_{1}^{<}$means "the left state is q_{1} "
$-\operatorname{mpls}<[24: 24]=1$ means "the 24th bit of mpls (on the left) is 1 "
If $\llbracket \phi \rrbracket$ is a bisimulation, then ϕ is a symbolic bisimulation.

Equivalence checking - intuition

ϕ_{0}

Equivalence checking - intuition

Equivalence checking - intuition

Equivalence checking - algorithm

```
R\leftarrow\emptyset
T\leftarrow{\mp@subsup{\mathrm{ accept }}{}{<}\Longleftrightarrow accept>}
while T\not=\emptyset do
    pop \psi from T
    if not }\R\vDash\psi\mathrm{ then
        R\leftarrowR\cup{\psi}
        T\leftarrowT\cupWP(\psi)
if }\phi\vDash\bigwedgeR\mathrm{ then
    return true
else
        return false
```


Equivalence checking - algorithm

$$
\begin{aligned}
& R \leftarrow \emptyset \\
& T \leftarrow\left\{\text { accept }^{<} \Longleftrightarrow \text { accept }^{>}\right\} \\
& \text {while } T \neq \emptyset \text { do } \\
& \begin{array}{l}
\text { pop } \psi \text { from } T \\
\text { if not } \bigwedge R \vDash \psi \text { then } \\
\left\lvert\, \begin{array}{l}
R \leftarrow R \cup\{\psi\} \\
T \leftarrow T \cup W P(\psi)
\end{array}\right. \\
\text { if } \phi \vDash \bigwedge R \text { then } \\
\text { return true }
\end{array} \\
& \text { else } \\
& \text { return false }
\end{aligned}
$$

Loop termination: either

- $\llbracket \wedge R \rrbracket$ shrinks; or
- $\llbracket \bigwedge R \rrbracket$ stays the same, T shrinks.

Equivalence checking - algorithm

$$
\begin{aligned}
& R \leftarrow \emptyset \\
& T \leftarrow\left\{\text { accept }^{<} \Longleftrightarrow \text { accept }^{>}\right\} \\
& \text {while } T \neq \emptyset \text { do } \\
& \begin{array}{l}
\text { pop } \psi \text { from } T \\
\text { if } \text { not } \bigwedge R \vDash \psi \text { then } \\
\left\lvert\, \begin{array}{l}
R \leftarrow R \cup\{\psi\} \\
T \leftarrow T \cup W P(\psi)
\end{array}\right. \\
\text { if } \phi \vDash \bigwedge R \text { then } \\
\text { return true }
\end{array} \\
& \text { else } \\
& \text { return false }
\end{aligned}
$$

Loop termination: either

- $\llbracket \wedge R \rrbracket$ shrinks; or
- $\llbracket \bigwedge R \rrbracket$ stays the same, T shrinks.

After the loop, $\bigwedge R$ is the weakest symbolic bisimulation.

Implementation

Implementation - Side-stepping the termination checker

Implementation - Side-stepping the termination checker

Algorithm state as proof rules:

$$
\begin{gathered}
\frac{\phi \vDash \bigwedge R}{\text { pre_bisim } \phi R[]} \text { CLOSE } \frac{\bigwedge R \vDash \psi \quad \text { pre_bisim } \phi R T}{\text { pre_bisim } \phi R(\psi:: T)} \text { SKIP } \\
\frac{\bigwedge R \not \vDash \psi \quad \text { pre_bisim } \phi(\psi:: R)(T ; \mathrm{WP}(\psi))}{\text { pre_bisim } \phi R(\psi:: T)} \text { ExTEND }
\end{gathered}
$$

Implementation - Side-stepping the termination checker

Algorithm state as proof rules:

$$
\begin{gathered}
\frac{\phi \vDash \bigwedge R}{\text { pre_bisim } \phi R[]} \text { CLOSE } \frac{\bigwedge R \vDash \psi \quad \text { pre_bisim } \phi R T}{\text { pre_bisim } \phi R(\psi:: T)} \text { SKIP } \\
\frac{\bigwedge R \not \vDash \psi \quad \text { pre_bisim } \phi(\psi:: R)(T ; \text { WP }(\psi))}{\text { pre_bisim } \phi R(\psi:: T)} \text { EXTEND }
\end{gathered}
$$

Lemma (Soundness)
If pre_bisim ϕ [] I, then all pairs in $\llbracket \phi \rrbracket$ are bisimilar.

Implementation - Side-stepping the termination checker

Algorithm state as proof rules:

$$
\begin{gathered}
\frac{\phi \vDash \bigwedge R}{\text { pre_bisim } \phi R[]} \text { CLOSE } \frac{\bigwedge R \vDash \psi \quad \text { pre_bisim } \phi R T}{\text { pre_bisim } \phi R(\psi:: T)} \text { SKIP } \\
\frac{\bigwedge R \not \vDash \psi \quad \text { pre_bisim } \phi(\psi:: R)(T ; \text { WP }(\psi))}{\text { pre_bisim } \phi R(\psi:: T)} \text { ExTEND }
\end{gathered}
$$

Lemma (Soundness)
If pre_bisim ϕ [] I, then all pairs in $\llbracket \phi \rrbracket$ are bisimilar.
Workflow: proof search for pre_bisim, applying exactly one of these three rules.

Implementation - Talk to SMT solver

H

Implementation — Talk to SMT solver

In theory:

- If T is empty, apply Done.
- If $\bigwedge R \vDash \psi$, apply Skip.
- If $\bigwedge R \not \vDash \psi$, apply Extend.

In practice:

- Massage entailment into fully quantified boolean formula.
- Custom plugin pretty-prints to SMT-LIB 2.0, asks solver.
- If SAT, admit $\bigwedge R \vDash \psi$ and apply Skip.
- If UNSAT, admit $\bigwedge R \not \forall \psi$ and apply Extend.

Evaluation - Microbenchmarks

Automatically verifies common transformations:

- Speculative extraction / vectorization.
- Common prefix factorization
- General versus specialized TLV parsing.
- Early versus late filtering.

Extends to certain hyperproperties:

- Independence of initial header store.
- Correspondence between final stores.

Evaluation - Applicability study

parser-gen (Gibb et al. 2013) compiles parser to optimized implementation.

- Benchmarks: about 30 states each, huge store datastructure.
- Leapfrog can validate equivalence of input to output.

Lessons learned

- Finite automata can go the distance.
- SMT solvers are really powerful.
- Programming in Coq is fun.

http://langsec.org/occupy/

References

国 G. Gibb et al. (2013). "Design principles for packet parsers". In: ANCS, pp. 13-24. DOI: 10.1109/ANCS. 2013.6665172.

