Concurrent Kleene Algebra: Free Model and Completeness

Tobias Kappé Paul Brunet Alexandra Silva Fabio Zanasi

University College London
Leiden, 28 May 2018

Introduction

Let's write a program that outputs $n>0$ space-separated ©'s.

Introduction

Let's write a program that outputs $n>0$ space-separated \odot° 's.

```
i:=1
while i<n do
    print ©;
    print u
    i:=i+1
end
print ©
```


Introduction

Let's write a program that outputs $n>0$ space-separated \odot° 's.

```
i:=1
while i<n do
    print ©
    print u
    i:=i+1
end
print (:
```

```
i:=1
print (:)
while i<n do
        print u
        print ©
        i:=i+1
end
```


Introduction

Let's write a program that outputs $n>0$ space-separated \odot° 's.

```
i:=1
while i<n do
    print ©;
    print u
    i:=i+1
end
print © 
```

$$
\begin{aligned}
& i:=1 \\
& \text { print }(\cdot) \\
& \text { while } i<n \text { do } \\
& \begin{array}{l}
\text { print } \\
\text { print } \odot \\
i \\
i
\end{array}=i+1 \\
& \text { end }
\end{aligned}
$$

Are these programs equivalent?

Introduction

Programs are expressions

Introduction

Programs are expressions, thus we should be able to reason equationally.

Introduction

Programs are expressions, thus we should be able to reason equationally. Kleene Algebra (KA) provides an algebraic framework to do this.

Introduction

program	expression
atomic action	$a, b, \ldots \in \Sigma$

Introduction

program	expression
atomic action	$a, b, \ldots \in \Sigma$
abort execution	0

Introduction

program	expression
atomic action	$a, b, \ldots \in \Sigma$
abort execution	0
no-operation	1

Introduction

program	expression
atomic action	$a, b, \ldots \in \Sigma$
abort execution	0
no-operation	1
nondeterministic choice	$e+f$

Introduction

program	expression
atomic action	$a, b, \ldots \in \Sigma$
abort execution	0
no-operation	1
nondeterministic choice	$e+f$
sequential composition	$e \cdot f$

Introduction

program	expression
atomic action	$a, b, \ldots \in \Sigma$
abort execution	0
no-operation	1
nondeterministic choice	$e+f$
sequential composition	$e \cdot f$
repetition	e^{*}

Introduction

```
i := 1
while i<n do
    print ©
    print u
    i:=i+1
end
print (:
```

```
i:= 1
print (:
while i<n do
    print u
    print ©
    i:=i+1
end
```


Introduction

Introduction

Axioms of KA:

$$
e+0 \equiv e \quad e+e \equiv e \quad e+f \equiv f+e \quad e+(f+g) \equiv(e+f)+g
$$

$$
e \cdot 0 \equiv 0 \equiv 0 \cdot e \quad e \cdot 1 \equiv e \equiv 1 \cdot e \quad e \cdot(f \cdot g) \equiv(e \cdot f) \cdot g
$$

$$
e \cdot(f+g) \equiv e \cdot f+e \cdot g \quad(e+f) \cdot g \equiv e \cdot g+f \cdot g
$$

$$
1+e \cdot e^{*} \equiv e^{*}
$$

$$
e \cdot f+g \leqq f \Longrightarrow e^{*} \cdot g \leqq f
$$

$$
1+e^{*} \cdot e \equiv e^{*}
$$

$$
e \cdot f+g \leqq e \Longrightarrow g \cdot f^{*} \leqq e
$$

Introduction

$$
\begin{gather*}
\text { Axioms of KA: } \\
e+0 \equiv e \quad \begin{array}{c}
e+e \equiv e \\
e \cdot 0 \equiv 0 \equiv 0 \cdot e \quad e \cdot 1 \equiv e \equiv 1 \cdot e
\end{array} \quad e \cdot(f \cdot g) \equiv(e \cdot f) \cdot g \\
e \cdot(f+g) \equiv e \cdot f+e \cdot g \\
1+e \cdot e^{*} \equiv e^{*} \\
1+e^{*} \cdot e \equiv e^{*} \\
e \cdot f+g \leqq f \Longrightarrow e^{*} \cdot g \leqq f \\
e \cdot f+g \leqq e \Longrightarrow g \cdot f^{*} \leqq e
\end{gather*}
$$

Introduction

$$
\left.\odot \cdot(\lrcorner \cdot(\cdot))^{*} \equiv(\odot \cdot\lrcorner\right)^{*} \cdot \odot
$$

Introduction

Theorem (Kozen 1990)

The axioms for KA are sound \& complete for equivalence:

$$
e \equiv f \Longleftrightarrow \mathcal{L}(e)=\mathcal{L}(f)
$$

$\mathcal{L}(e)$ is the regular language interpretation of e.

Introduction

Theorem (Kozen 1990)

The axioms for KA are sound \& complete for equivalence:

$$
e \equiv f \Longleftrightarrow \mathcal{L}(e)=\mathcal{L}(f)
$$

$\mathcal{L}(e)$ is the regular language interpretation of e.

Upshot:

- to check KA equivalence is to check regular language equivalence
- through Kleene's theorem, this means checking DFA equivalence
- sophisticated (near-linear) algorithms exist to do this

Adding concurrency

Which new axioms do we need for parallel composition?

Adding concurrency

Which new axioms do we need for parallel composition?

$$
e\|f \equiv f\| e
$$

Adding concurrency

Which new axioms do we need for parallel composition?

$$
e\|f \equiv f\| e \quad e\|(f \| g) \equiv(e \| f)\| g
$$

Adding concurrency

Which new axioms do we need for parallel composition?

$$
e\|f \equiv f\| e \quad e\|(f \| g) \equiv(e \| f)\| g
$$

$$
e \| 1 \equiv e
$$

Adding concurrency

Which new axioms do we need for parallel composition?

$$
e\|f \equiv f\| e \quad e\|(f \| g) \equiv(e \| f)\| g
$$

$$
e \| 1 \equiv e
$$

$$
e \| 0 \equiv 0
$$

Adding concurrency

Which new axioms do we need for parallel composition?

$$
\begin{array}{cc}
e\|f \equiv f\| e & e\|(f \| g) \equiv(e \| f)\| g \\
e \| 1 \equiv e & e \| 0 \equiv 0
\end{array} \quad e\|(f+g) \equiv e\| f+e \| g
$$

Adding concurrency

Equationally: $(e \| g) \cdot(f \| h) \leqq(e \cdot f) \|(g \cdot h)$.

Adding concurrency

Equationally: $(e \| g) \cdot(f \| h) \leqq(e \cdot f) \|(g \cdot h)$.

$$
p \leqq q \Longleftrightarrow p+q \equiv q
$$

Adding concurrency

Equationally: $(e \| g) \cdot(f \| h) \leqq(e \cdot f) \|(g \cdot h)$.
Nondeterministic interleaving as special case: $e \cdot f+f \cdot e \leqq e \| f$.

Adding concurrency

Question

Can we have a regular interpretation $\llbracket-\rrbracket$ such that $e \equiv f \Longleftrightarrow \llbracket e \rrbracket=\llbracket f \rrbracket$?

Adding concurrency

Question

Can we have a regular interpretation $\llbracket-\rrbracket$ such that $e \equiv f \Longleftrightarrow \llbracket e \rrbracket=\llbracket f \rrbracket$?

NB: $\llbracket-\rrbracket$ should generalize $\mathcal{L}(-)$: for $\|$-less terms, $\mathcal{L}(e)$ should resemble $\llbracket e \rrbracket$.

Regular interpretation: first attempt

Partially ordered multiset (pomset):

$$
a \cdot b \cong a \longrightarrow b
$$

Regular interpretation: first attempt

Partially ordered multiset (pomset):

$$
a \cdot b \cong a \longrightarrow b \quad a \| b \cong a
$$

Regular interpretation: first attempt

Partially ordered multiset (pomset):

$$
a \cdot b \cong a \longrightarrow b \quad c \cdot(a \| b) \cong c
$$

Regular interpretation: first attempt

Partially ordered multiset (pomset):

$$
a \cdot b \cong a \longrightarrow b \quad c \cdot(a \| b) \cdot d \cong c
$$

Regular interpretation: first attempt

Partially ordered multiset (pomset):

$$
a \cdot b \cong a \longrightarrow b
$$

Composition lifts to sets of pomsets in the obvious way.

Regular interpretation: first attempt

Straightforward semantics: (-): $\mathcal{T} \rightarrow 2^{\text {Pomsets }}$ given by

$$
\begin{array}{lrl}
(0)=\emptyset & (e+f) & =(e) \cup(f) \\
(1) & =\{1\} & (e \cdot f) \\
(a)=\{e) \cdot(f) & \left(e^{*}\right)=(e)^{*} \\
(a\} & (e \| f) & =(e) \|(f)
\end{array}
$$

Regular interpretation: first attempt

Straightforward semantics: $(-): \mathcal{T} \rightarrow 2^{\text {Pomsets }}$ given by

$$
\begin{array}{lrl}
(0)=\emptyset & (e+f) & =(e) \cup(f) \\
(1) & =\{1\} & (e \cdot f) \\
(a)=\{e) \cdot(f) & \left(e^{*}\right)=(e)^{*} \\
(a\} & (e \| f) & =(e) \|(f)
\end{array}
$$

Problem: $(-)$ is not sound for the exchange law.

Regular interpretation: first attempt

Straightforward semantics: (-): $\mathcal{T} \rightarrow 2^{\text {Pomsets }}$ given by

$$
\begin{array}{lrl}
(0)=\emptyset & (e+f) & =(e) \cup(f) \\
(1)=\{1\} & (e \cdot f) & =(e) \cdot(f) \\
(a)=\{a\} & (e \| f) & =(e) \|\left(e^{*}\right)=(e)^{*} \\
(a) &
\end{array}
$$

Problem: (-) is not sound for the exchange law.
For instance: $a \cdot b \leqq a \| b$ should imply that $(a \cdot b) \subseteq(a \| b)$, but

$$
(a \cdot b)=\{a \rightarrow b\} \quad(a \| b)=\left\{\begin{array}{ll}
a & b
\end{array}\right\}
$$

Regular interpretation: first attempt

Axioms to build \approx are axioms for \equiv, minus exchange law.

Regular interpretation: first attempt

Axioms to build \approx are axioms for \equiv, minus exchange law.

Theorem (Laurence and Struth 2014)

The axioms for \approx are sound \& complete w.r.t. $(-)$:

$$
e \approx f \Longleftrightarrow(e)=(f)
$$

Regular interpretation: second attempt

We define the subsumption order \sqsubseteq on pomsets.
Intuition: $U \sqsubseteq V$ if
$11 U$ and V have the same events, and
Iii U has all order in V (and possibly more)

Regular interpretation: second attempt

We define the subsumption order \sqsubseteq on pomsets.
Intuition: $U \sqsubseteq V$ if
$11 U$ and V have the same events, and
Iii U has all order in V (and possibly more)

For example:

$$
a \longrightarrow b \sqsubseteq a \quad b
$$

Regular interpretation: second attempt

We define the subsumption order \sqsubseteq on pomsets.
Intuition: $U \sqsubseteq V$ if
$11 U$ and V have the same events, and
Iii U has all order in V (and possibly more)

For example:

Regular interpretation: second attempt

"Fixed" semantics: $\llbracket e \rrbracket=(e) \downarrow$.
downward closure w.r.t. \sqsubseteq

Regular interpretation: second attempt

"Fixed" semantics: $\llbracket e \rrbracket=(e) \downarrow$.
Previous problem no longer occurs:

$$
\llbracket a \cdot b \rrbracket=\{a \rightarrow b\} \subseteq\{a \rightarrow b, a \leftarrow b, a \quad b\}=\llbracket a \| b \rrbracket
$$

Regular interpretation: second attempt

"Fixed" semantics: $\llbracket e \rrbracket=(e) \downarrow$.
Previous problem no longer occurs:

$$
\llbracket a \cdot b \rrbracket=\{a \rightarrow b\} \subseteq\{a \rightarrow b, a \leftarrow b, a \quad b\}=\llbracket a \| b \rrbracket
$$

Lemma (Hoare et al. 2009)

The axioms for \equiv are sound w.r.t. $\llbracket-\rrbracket$, i.e., $e \equiv f$ implies $\llbracket e \rrbracket=\llbracket f \rrbracket$.

Closure

Definition

Let $e \in \mathcal{T}$; a closure of e is a term $e \downarrow$ such that
$11 e \downarrow \equiv e$
$2 \llbracket e \rrbracket=(e \downarrow)$

Closure

Definition

Let $e \in \mathcal{T}$; a closure of e is a term $e \downarrow$ such that
$11 e \downarrow \equiv e$
$2 \llbracket e \rrbracket=(e \downarrow)$

Lemma (Laurence and Struth 2017)

If closures exist for all terms, then \equiv is complete w.r.t. $\llbracket-\rrbracket$, i.e., $\llbracket e \rrbracket=\llbracket f \rrbracket$ implies $e \equiv f$.

Closure

Definition

Let $e \in \mathcal{T}$; a closure of e is a term $e \downarrow$ such that
$11 e \downarrow \equiv e$
२ $\llbracket e \rrbracket=(e \downarrow)$

Lemma (Laurence and Struth 2017)

If closures exist for all terms, then \equiv is complete w.r.t. $\llbracket-\rrbracket$, i.e., $\llbracket e \rrbracket=\llbracket f \rrbracket$ implies e $\equiv f$.

Proof.

If $\llbracket e \rrbracket=\llbracket f \rrbracket$,

Closure

Definition

Let $e \in \mathcal{T}$; a closure of e is a term $e \downarrow$ such that
$11 e \downarrow \equiv e$
२ $\llbracket e \rrbracket=(e \downarrow)$

Lemma (Laurence and Struth 2017)

If closures exist for all terms, then \equiv is complete w.r.t. $\llbracket-\rrbracket$, i.e., $\llbracket e \rrbracket=\llbracket f \rrbracket$ implies e $\equiv f$.

Proof.

If $\llbracket e \rrbracket=\llbracket f \rrbracket$, then $(e \downarrow \downarrow)=\ f \downarrow \downarrow$,

Closure

Definition

Let $e \in \mathcal{T}$; a closure of e is a term $e \downarrow$ such that
$11 e \downarrow \equiv e$
२ $\llbracket e \rrbracket=(e \downarrow)$

Lemma (Laurence and Struth 2017)

If closures exist for all terms, then \equiv is complete w.r.t. $\llbracket-\rrbracket$, i.e., $\llbracket e \rrbracket=\llbracket f \rrbracket$ implies e $\equiv f$.

Proof.

If $\llbracket e \rrbracket=\llbracket f \rrbracket$, then $(e \downarrow \downarrow)=\ f \downarrow$), thus $e \downarrow \approx f \downarrow$.

Closure

Definition

Let $e \in \mathcal{T}$; a closure of e is a term $e \downarrow$ such that
$11 e \downarrow \equiv e$
२ $\llbracket e \rrbracket=(e \downarrow)$

Lemma (Laurence and Struth 2017)

If closures exist for all terms, then \equiv is complete w.r.t. $\llbracket-\rrbracket$, i.e., $\llbracket e \rrbracket=\llbracket f \rrbracket$ implies e $\equiv f$.

Proof.

If $\llbracket e \rrbracket=\llbracket f \rrbracket$, then $(e \downarrow)=(f \downarrow)$, thus $e \downarrow \approx f \downarrow$. Therefore, $\quad e \downarrow \equiv f \downarrow$.

Closure

Definition

Let $e \in \mathcal{T}$; a closure of e is a term $e \downarrow$ such that
$11 e \downarrow \equiv e$
२ $\llbracket e \rrbracket=(e \downarrow)$

Lemma (Laurence and Struth 2017)

If closures exist for all terms, then \equiv is complete w.r.t. $\llbracket-\rrbracket$, i.e., $\llbracket e \rrbracket=\llbracket f \rrbracket$ implies e $\equiv f$.

Proof.

If $\llbracket e \rrbracket=\llbracket f \rrbracket$, then $(e \downarrow \downarrow)=\backslash f \downarrow \downarrow$, thus $e \downarrow \approx f \downarrow$. Therefore, $e \equiv e \downarrow \equiv f \downarrow \equiv f$.

Main contribution

Theorem

If $e \in \mathcal{T}$, then we can compute a term $e \downarrow$ that is a closure of e.

Main contribution

Theorem

If $e \in \mathcal{T}$, then we can compute a term $e \downarrow$ that is a closure of e.
Corollary
The axioms for CKA are sound \& complete w.r.t. $\llbracket-\rrbracket$:

$$
e \equiv f \Longleftrightarrow \llbracket e \rrbracket=\llbracket f \rrbracket
$$

Main contribution

Theorem

If $e \in \mathcal{T}$, then we can compute a term $e \downarrow$ that is a closure of e.

Corollary

The axioms for CKA are sound \& complete w.r.t. $\llbracket-\rrbracket$:

$$
e \equiv f \Longleftrightarrow \llbracket e \rrbracket=\llbracket f \rrbracket
$$

The latter can be decided; c.f. [Brunet, Pous, and Struth 2017].

Further work

- Explore coalgebraic perspective:
- Efficient equivalence checking through bisimulation?
- Can completeness be shown coalgebraically?
- Add "parallel star" operator - closure method does not apply.
- Extend Kleene Algebra with Tests (KAT) to add concurrency.
- Extend extend NetKAT with concurrency.

Thank you for your attention

GoNe6o

Implementation: https://doi.org/10.5281/zenodo. 926651.

Extended paper: https://arxiv.org/abs/1710.02787.

Bonus: computing the closure

So, how does one compute a closure?

Bonus: computing the closure

So, how does one compute a closure?

Lemma

If e, f have closures $e \downarrow$ and $f \downarrow$ respectively, then
$11 e \downarrow+f \downarrow$ is a closure of $e+f$
$2 e \downarrow \cdot f \downarrow$ is a closure of $e \cdot f$
B $e \downarrow^{*}$ is a closure of e^{*}

Bonus: computing the closure

So, how does one compute a closure?

Lemma

If e, f have closures $e \downarrow$ and $f \downarrow$ respectively, then
$1 \quad e \downarrow+f \downarrow$ is a closure of $e+f$
$12 e \downarrow \cdot f \downarrow$ is a closure of $e \cdot f$
$3 e \downarrow^{*}$ is a closure of e^{*}

One case remains: parallel composition.

Bonus: computing the closure

Sketch: given $e \| f$, apply exchange law syntactically, "in the limit".

Bonus: computing the closure

Sketch: given e\|f, apply exchange law syntactically, "in the limit".
For instance: if $e=a \cdot b$ and $f=c \cdot d$:
$-(a \| c) \cdot(b \| d) \leqq e \| f$

$$
(e=a \bullet b, f=c \bullet d)
$$

Bonus: computing the closure

Sketch: given $e \| f$, apply exchange law syntactically, "in the limit".
For instance: if $e=a \cdot b$ and $f=c \cdot d$:

- $(a \| c) \cdot(b \| d) \leqq e \| f$
- $(a \| 1) \cdot(b \|(c \cdot d)) \leqq e \| f$

$$
\begin{array}{r}
(e=a \bullet b, f=c \bullet d) \\
(e=a \bullet b, f=1 \bullet c \cdot d)
\end{array}
$$

Bonus: computing the closure

Sketch: given $e \| f$, apply exchange law syntactically, "in the limit".
For instance: if $e=a \cdot b$ and $f=c \cdot d$:
$\square(a \| c) \cdot(b \| d) \leqq e \| f$

- $(a \| 1) \cdot(b \|(c \cdot d)) \leqq e \| f$
- $(1 \| c) \cdot((a \cdot b) \| d) \leqq e \| f$

$$
\begin{array}{r}
(e=a \bullet b, f=c \bullet d) \\
(e=a \bullet b, f=1 \bullet c \cdot d) \\
(e=1 \bullet a \cdot b, f=c \bullet d)
\end{array}
$$

Bonus: computing the closure

Sketch: given $e \| f$, apply exchange law syntactically, "in the limit".
For instance: if $e=a \cdot b$ and $f=c \cdot d$:
$-(a \| c) \cdot(b \| d) \leqq e \| f$

- $(a \| 1) \cdot(b \|(c \cdot d)) \leqq e \| f$
- $(1 \| c) \cdot((a \cdot b) \| d) \leqq e \| f$

$$
\begin{array}{r}
(e=a \bullet b, f=c \bullet d) \\
(e=a \bullet b, f=1 \bullet c \cdot d) \\
(e=1 \bullet a \cdot b, f=c \bullet d)
\end{array}
$$

Goal: find enough of these terms to cover all pomsets in $\llbracket e \| f \rrbracket$.

Bonus: computing the closure

Obstacles to overcome:
How to split terms e and f into heads and tails?

Bonus: computing the closure

Obstacles to overcome:

- How to split terms e and f into heads and tails?
- What to do about recursion? For instance,

$$
(e \| f) \cdot\left(e^{*} \| f^{*}\right) \leqq e^{*} \| f^{*}
$$

Bonus: computing the closure

Obstacles to overcome:

- How to split terms e and f into heads and tails?
[菅 splicing relations
- What to do about recursion? For instance,

$$
(e \| f) \cdot\left(e^{*} \| f^{*}\right) \leqq e^{*} \| f^{*}
$$

Bonus: computing the closure

Obstacles to overcome:

- How to split terms e and f into heads and tails?
- What to do about recursion? For instance,
[宮 splicing relations
[菅 fixpoints of inequations

$$
(e \| f) \cdot\left(e^{*} \| f^{*}\right) \leqq e^{*} \| f^{*}
$$

Bonus: computing the closure

Definition
Let $e \in \mathcal{T}$. We define $\nabla_{e} \subseteq \mathcal{T} \times \mathcal{T}$ as the smallest relation such that

$$
\begin{gathered}
\overline{1 \nabla_{1} 1} \\
\overline{a \nabla_{a} 1}
\end{gathered} \overline{1 \nabla_{a} a} \quad \overline{1 \nabla_{e^{*}} 1} \quad \frac{\ell \nabla_{e} r}{\ell \nabla_{e+f} r}
$$

Lemma
Let $e \in \mathcal{T}$ and $U \cdot V \in \llbracket e \rrbracket_{\text {wска }}$; there exist $\ell \nabla_{e} r$ such that $U \in \llbracket \ell \rrbracket$ and $V \in \llbracket r \rrbracket$.

Bonus: computing the closure

Suppose that for all $g, h \in \mathcal{T}$, we have that $X_{g \| h}$ is a closure of $g \| h$.
Then we find

$$
e \| f+\sum_{\substack{\ell_{e} \nabla_{e} r_{e} \\ \ell_{f} \nabla_{f} r_{f}}}\left(\ell_{e} \| \ell_{f}\right) \cdot\left(r_{e} \| r_{f}\right) \leqq X_{e\| \|}
$$

Bonus: computing the closure

Suppose that for all $g, h \in \mathcal{T}$, we have that $X_{g \| h}$ is a closure of $g \| h$.
Then we find

$$
e \| f+\sum_{\substack{\ell_{e} \nabla_{e} r_{e} \\ \ell_{f} \nabla_{f} r_{f}}}\left(\ell_{e} \| \ell_{f}\right) \cdot X_{r_{e} \| r_{f}} \leqq X_{e \| f}
$$

Bonus: computing the closure

Suppose that for all $g, h \in \mathcal{T}$, we have that $X_{g \| h}$ is a closure of $g \| h$.
Then we find

$$
e \| f+\sum_{\substack{\ell_{e} \nabla_{e} r_{e} \\ \ell_{f} \nabla_{f} r_{f}}}\left(\ell_{e} \| \ell_{f}\right) \cdot X_{r_{e} \| r_{f}} \leqq X_{e \| f}
$$

For $X_{r_{e} \| r_{f}}$, we find another inequation, et cetera. . .

Bonus: computing the closure

Suppose that for all $g, h \in \mathcal{T}$, we have that $X_{g \| h}$ is a closure of $g \| h$.
Then we find

$$
e \| f+\sum_{\substack{\ell_{e} \nabla_{e} r_{e} \\ \ell_{f} \nabla_{f} r_{f}}}\left(\ell_{e} \| \ell_{f}\right) \cdot X_{r_{e} \| r_{f}} \leqq X_{e \| f}
$$

For $X_{r_{e}} \|_{r_{f}}$, we find another inequation, et cetera...

Lemma

Continuing this, we get a finite system of inequations $\langle M, \vec{b}\rangle_{e \| f}$.

Bonus: computing the closure

```
Theorem
Let \(e \otimes f\) be the least solution to \(X_{e \| f}\) in \(\langle M, \vec{b}\rangle_{e \| f}\). Then the following hold:
    (11) \(e \otimes f \equiv e \| f\)
    [2 \((e \otimes f)=\llbracket e \| f \rrbracket\)
In other words, \(e \otimes f\) is a closure of \(\boldsymbol{e} \| f\).
```

