The algebra of programs

Tobias Kappé

Eerstejaarsreis DLF — January 19th, 2019

Introduction

Fredrik Dahlqvist

Primitive geometry

Primitive geometry

Primitive geometry

Primitive geometry

Primitive geometry

Primitive geometry

$$
W \times L=L \times W
$$

Primitive geometry

典

Primitive geometry

典 ()

$(L \times W) \times H=(W \times H) \times L$

Primitive geometry

$(L \times W) \times H=L \times(W \times H)$

Primitive geometry

$$
(L \times W) \times H=L \times(W \times H)=L \times(H \times W)=(H \times W) \times L
$$

Primitive geometry

$$
(L \times W) \times H=L \times(W \times H)=L \times(H \times W)=(H \times W) \times L
$$

Primitive geometry

- You can imagine "laws" of multiplication, even if you know only what it represents.
- These laws then allow you to reason about what else should be true.

And now for something completely different

Reasoning about programs

- Consider this "programming language":
[ϕ
P ¢ Q
$P \oplus_{\phi} Q$
P^{ϕ}

Reasoning about programs

- Consider this "programming language":

[ϕ]
abort if ϕ is false

$P ; Q$
$P \oplus_{\phi} Q$
P^{ϕ}

Reasoning about programs

- Consider this "programming language":
[ϕ
$P ; Q$
$P \oplus_{\phi} Q$
P^{ϕ}
first execute P, then execute Q

Reasoning about programs

- Consider this "programming language":
[ϕ]
$P ; Q$
$P \oplus_{\phi} Q$
P^{ϕ}
if ϕ holds, run P, otherwise run Q.

Reasoning about programs

- Consider this "programming language":
[ϕ]
$P ; Q$

$$
P \oplus_{\phi} Q
$$

$$
P^{\phi}
$$ run P for as long as ϕ holds.

Reasoning about programs

- Consider this "programming language":
[$\phi]$
$P ; Q$
$P \oplus_{\phi} Q$
P^{ϕ}
- Write $P \leqq Q$ if P and Q agree on the inputs where P succeeds.

Reasoning about programs

- Consider this "programming language":
[$\phi]$
$P ; Q$
$P \oplus_{\phi} Q$
P^{ϕ}
- Write $P \leqq Q$ if P and Q agree on the inputs where P succeeds.
Q "simulates" P

Reasoning about programs

- Consider this "programming language":
[$\phi]$
$P ; Q$
$P \oplus_{\phi} Q$
P^{ϕ}
- Write $P \leqq Q$ if P and Q agree on the inputs where P succeeds.
- If $P \leqq Q$ and $Q \leqq P$, we write $P \equiv Q$.

Reasoning about programs

- Consider this "programming language":
[$\phi]$
$P ; Q$
$P \oplus_{\phi} Q$
P^{ϕ}
- Write $P \leqq Q$ if P and Q agree on the inputs where P succeeds.
- If $P \leqq Q$ and $Q \leqq P$, we write $P \equiv Q$.
- For example, we have:

Reasoning about programs

- Consider this "programming language":
[$\phi]$
$P ; Q$
$P \oplus_{\phi} Q$
P^{ϕ}
- Write $P \leqq Q$ if P and Q agree on the inputs where P succeeds.
- If $P \leqq Q$ and $Q \leqq P$, we write $P \equiv Q$.
- For example, we have:

$$
[\text { false }] \leqq P
$$

Reasoning about programs

- Consider this "programming language":
[ϕ]
$P ; Q$
$P \oplus_{\phi} Q$
P^{ϕ}
- Write $P \leqq Q$ if P and Q agree on the inputs where P succeeds.
- If $P \leqq Q$ and $Q \leqq P$, we write $P \equiv Q$.
- For example, we have:

$$
[\text { false }] \leqq P \quad Q \oplus_{\neg_{\phi}} P \equiv P \oplus_{\phi} Q
$$

Reasoning about programs

Other "laws of programming"?

Reasoning about programs

Other "laws of programming"?

$$
[\phi] \stackrel{[\psi] \equiv[\phi \wedge \psi]}{ }
$$

Reasoning about programs

Other "laws of programming"?

$$
[\phi] \circ[\psi] \equiv[\phi \wedge \psi] \quad P \oplus_{\phi} Q \equiv([\phi] \circ P) \oplus_{\phi} Q
$$

Reasoning about programs

Other "laws of programming"?

$$
\begin{aligned}
{[\phi] ;[\psi] \equiv[\phi \wedge \psi] } & P \oplus_{\phi} Q \equiv([\phi] ; P) \oplus_{\phi} Q \\
P^{\phi} \equiv\left(P ; P^{\phi}\right) \oplus_{\phi}[\text { true }] &
\end{aligned}
$$

Reasoning about programs

Other "laws of programming"?

$$
\begin{array}{rr}
{[\phi] ;[\psi] \equiv[\phi \wedge \psi]} & P \oplus_{\phi} Q \equiv([\phi] ; P) \oplus_{\phi} Q \\
P^{\phi} \equiv\left(P ; P^{\phi}\right) \oplus_{\phi}[\text { true }] & (P ; R) \oplus_{\phi}(Q ; R) \equiv\left(P \oplus_{\phi} Q\right) \% R
\end{array}
$$

Reasoning about programs

We also have the fixpoint rule:

$$
\frac{P \equiv(Q ; P) \oplus_{\phi} R}{Q^{\phi} ; R \leqq P}
$$

Reasoning about programs

We also have the fixpoint rule:

$$
\frac{P \equiv(Q ; P) \oplus_{\phi} R}{Q^{\phi} ; R \leqq P}
$$

If P is a program which does the following:

- If ϕ holds, execute Q and start again with P.
- Otherwise, execute the program R.
then P can simulate $Q^{\Phi} ; R$.

Reasoning about programs

The the dual of the fixpoint rule does not hold in general:

$$
\frac{P \equiv(Q ; P) \oplus_{\phi} R}{P \leqq Q^{\phi} ; R}
$$

Reasoning about programs

The the dual of the fixpoint rule does not hold in general:

$$
\frac{P \equiv(Q ; P) \oplus_{\phi} R}{P \leqq Q^{\phi} ; R}
$$

Counterexample: consider that

$$
[\text { true }] \equiv([\text { true }] \rho[\text { true }]) \oplus_{\text {true }}[\text { true }]
$$

Reasoning about programs

The the dual of the fixpoint rule does not hold in general:

$$
\frac{P \equiv(Q ; P) \oplus_{\phi} R}{P \leqq Q^{\phi} ; R}
$$

Counterexample: consider that

$$
[\text { true }] \equiv([\text { true }] \stackrel{\rho}{ }[\text { true }]) \oplus_{\text {true }}[\text { true }]
$$

while the following is false:

$$
[\text { true }] \leqq[\text { true }]^{\text {true }} ;[\text { true }]
$$

Reasoning about programs

Lemma

For all P and ϕ, we have $P^{\phi} \equiv([\phi] ; P)^{\phi}$

Proof.

First, note that

$$
\begin{aligned}
P^{\phi} & \left.\equiv\left(P ; P^{\phi}\right) \oplus_{\phi} \text { [true }\right] \\
& \equiv\left([\phi] ; P ; P^{\phi}\right) \oplus_{\phi}[\text { true }]
\end{aligned}
$$

Reasoning about programs

Lemma

For all P and ϕ, we have $P^{\phi} \equiv([\phi] ; P)^{\phi}$

Proof.

First, note that

$$
\begin{aligned}
P^{\phi} & \left.\equiv\left(P ; P^{\phi}\right) \oplus_{\phi} \text { [true }\right] \\
& \equiv\left([\phi] ; P ; P^{\phi}\right) \oplus_{\phi}[\text { true }]
\end{aligned}
$$

Thus, by the fixpoint rule

$$
([\phi] ; P)^{\phi} \equiv([\phi] ; P)^{\phi} ;[\text { true }] \leqq P^{\phi}
$$

Reasoning about programs

Lemma

For all P and ϕ, we have $P^{\phi} \equiv([\phi] ; P)^{\phi}$

Proof.

For the other direction, we note

$$
\begin{aligned}
([\phi] ; P)^{\phi} & \equiv\left([\phi] ; P ;([\phi] ; P)^{\phi}\right) \oplus_{\phi}[\text { true }] \\
& \equiv\left(P ;([\phi] ; P)^{\phi}\right) \oplus_{\phi}[\text { true }]
\end{aligned}
$$

Reasoning about programs

Lemma

For all P and ϕ, we have $P^{\phi} \equiv([\phi] ; P)^{\phi}$

Proof.

For the other direction, we note

$$
\begin{aligned}
([\phi] ; P)^{\phi} & \equiv\left([\phi] ; P ;([\phi] ; P)^{\phi}\right) \oplus_{\phi}[\text { true }] \\
& \equiv\left(P ;([\phi] ; P)^{\phi}\right) \oplus_{\phi}[\text { true }]
\end{aligned}
$$

Thus, by the fixpoint rule

$$
P^{\phi} \equiv P^{\phi} ;[\text { true }] \leqq([\phi] ; P)^{\phi}
$$

Reasoning about programs

Lemma

For all P and ϕ, we have $P^{\phi} \equiv P^{\phi} ;[\neg \phi]$.

Proof.

First, derive that

$$
\begin{aligned}
P^{\phi} & \equiv\left(P ; P^{\phi}\right) \oplus_{\phi}[\text { true }] \\
& \equiv\left(P ; P^{\phi}\right) \oplus_{\phi}[\neg \phi]
\end{aligned}
$$

Reasoning about programs

Lemma

For all P and ϕ, we have $P^{\phi} \equiv P^{\phi} ;[\neg \phi]$.

Proof.

First, derive that

$$
\begin{aligned}
P^{\phi} & \equiv\left(P ; P^{\phi}\right) \oplus_{\phi}[\text { true }] \\
& \equiv\left(P ; P^{\phi}\right) \oplus_{\phi}[\neg \phi]
\end{aligned}
$$

Thus, by the fixpoint rule

$$
P^{\phi} ;[\neg \phi] \leqq P^{\phi}
$$

Reasoning about programs

Lemma

For all P and ϕ, we have $P^{\phi} \equiv P^{\phi} ;[\neg \phi]$.

Proof.

For the other direction, derive that

$$
\begin{aligned}
P^{\phi} ;[\neg \phi] & \equiv\left(\left(P ; P^{\phi}\right) \oplus_{\phi}[\text { true }]\right) ;[\neg \phi] \\
& \equiv\left(P ; P^{\phi} ;[\neg \phi]\right) \oplus_{\phi}[\neg \phi] \\
& \equiv\left(P ; P^{\phi} ;[\neg \phi]\right) \oplus_{\phi}[\text { true }]
\end{aligned}
$$

Reasoning about programs

Lemma

For all P and ϕ, we have $P^{\phi} \equiv P^{\phi} ;[\neg \phi]$.

Proof.

For the other direction, derive that

$$
\begin{aligned}
P^{\phi} ;[\neg \phi] & \equiv\left(\left(P ; P^{\phi}\right) \oplus_{\phi}[\text { true }]\right) ;[\neg \phi] \\
& \equiv\left(P ; P^{\phi} ;[\neg \phi]\right) \oplus_{\phi}[\neg \phi] \\
& \equiv\left(P ; P^{\phi} ;[\neg \phi]\right) \oplus_{\phi}[\text { true }]
\end{aligned}
$$

Thus, by the fixpoint rule

$$
P^{\phi} \equiv P^{\phi} ;[\text { true }] \leqq P^{\phi} ;[\neg \phi]
$$

Open questions

A function $\llbracket-\rrbracket:$ Prog $\rightarrow S$ is called a model

A model is ${ }^{1}$

- sound if whenever $P \leqq Q$ we have $\llbracket P \rrbracket \subseteq \llbracket Q \rrbracket$

[^0]
Open questions

A function $\llbracket-\rrbracket:$ Prog $\rightarrow S$ is called a model
A model is ${ }^{1}$

- sound if whenever $P \leqq Q$ we have $\llbracket P \rrbracket \subseteq \llbracket Q \rrbracket$
- complete if whenever $\llbracket P \rrbracket \subseteq \llbracket Q \rrbracket$ we have $P \leqq Q$

[^1]
Open questions

A function $\llbracket-\rrbracket:$ Prog $\rightarrow S$ is called a model
A model is ${ }^{1}$

- sound if whenever $P \leqq Q$ we have $\llbracket P \rrbracket \subseteq \llbracket Q \rrbracket$
- complete if whenever $\llbracket P \rrbracket \subseteq \llbracket Q \rrbracket$ we have $P \leqq Q$
- free if it is both sound and complete.

[^2]
Open questions

A function $\llbracket-\rrbracket:$ Prog $\rightarrow S$ is called a model
A model is ${ }^{1}$

- sound if whenever $P \leqq Q$ we have $\llbracket P \rrbracket \subseteq \llbracket Q \rrbracket$
- complete if whenever $\llbracket P \rrbracket \subseteq \llbracket Q \rrbracket$ we have $P \leqq Q$
- free if it is both sound and complete.

Question: what is the free model of these expressions?

[^3]
Open questions

Proofs are hard - can we automate them?

Battle plan:

Open questions

Proofs are hard - can we automate them?

Battle plan:

- Suppose $\llbracket-\rrbracket$ is free - then $P \leqq Q \Longleftrightarrow \llbracket P \rrbracket \subseteq \llbracket Q \rrbracket$.

Open questions

Proofs are hard - can we automate them?

Battle plan:

- Suppose $\llbracket-\rrbracket$ is free - then $P \leqq Q \Longleftrightarrow \llbracket P \rrbracket \subseteq \llbracket Q \rrbracket$.
- But $\llbracket P \rrbracket$ and $\llbracket Q \rrbracket$ are (in general) infinite!

Open questions

Proofs are hard - can we automate them?

Battle plan:

- Suppose $\llbracket-\rrbracket$ is free - then $P \leqq Q \Longleftrightarrow \llbracket P \rrbracket \subseteq \llbracket Q \rrbracket$.
- But $\llbracket P \rrbracket$ and $\llbracket Q \rrbracket$ are (in general) infinite!
- Create finite representation ("automaton") A_{P} where $L\left(A_{P}\right)=\llbracket P \rrbracket$.

Open questions

Proofs are hard - can we automate them?

Battle plan:

- Suppose $\llbracket-\rrbracket$ is free - then $P \leqq Q \Longleftrightarrow \llbracket P \rrbracket \subseteq \llbracket Q \rrbracket$.
- But $\llbracket P \rrbracket$ and $\llbracket Q \rrbracket$ are (in general) infinite!
- Create finite representation ("automaton") A_{P} where $L\left(A_{P}\right)=\llbracket P \rrbracket$.
- Design an algorithm to check whether $L\left(A_{P}\right) \subseteq L\left(A_{Q}\right)$.

GONeGO

https://coneco-project.org
For slides, see https://tobias.kap.pe

[^0]: ${ }^{1}$ Stretching established terms a bit here.

[^1]: ${ }^{1}$ Stretching established terms a bit here.

[^2]: ${ }^{1}$ Stretching established terms a bit here.

[^3]: ${ }^{1}$ Stretching established terms a bit here.

