Concurrent Kleene Algebra: Free Model and Completeness

Tobias Kappé ${ }^{1}$ Paul Brunet ${ }^{1} \quad$ Alexandra Silva ${ }^{1} \quad$ Fabio Zanasi ${ }^{1}$
${ }^{1}$ University College London
Brouwer Seminar

Introduction

Kleene Algebra models program flow.

- abort (0) and skip (1)
- atomic actions (a, b, \ldots)
- non-deterministic choice (+)

$$
(e+f)^{*} \equiv_{\text {KA }} e^{*} \cdot\left(f \cdot e^{*}\right)^{*}
$$

- sequential composition (•)
- indefinite repetition (*)

Introduction

How do we model concurrent composition?

Introduction

Interleaving is a stop-gap: concurrency information lacking from traces.

Introduction

Concurrent KA ${ }^{1}$ adds parallel composition ($\|$)

[^0]
Introduction

KA is well-studied:

- Decision procedures
- Automata, coalgebra
- Free model, completeness
[Hopcroft and Karp 1971; Bonchi and Pous 2013] [Kleene 1956; Brzozowski 1964; Silva 2010] [Salomaa 1966; Conway 1971; Kozen 1994]

Introduction

KA is well-studied:

- Decision procedures
- Automata, coalgebra
- Free model, completeness
[Hopcroft and Karp 1971; Bonchi and Pous 2013] [Kleene 1956; Brzozowski 1964; Silva 2010] [Salomaa 1966; Conway 1971; Kozen 1994]

CKA is a work in progress:

- Decision procedures
- Automata
- Free model, completeness
[Brunet, Pous, and Struth 2017]
[Lodaya and Weil 2000; Jipsen and Moshier 2016]
[Gischer 1988; Laurence and Struth 2014]
See also [K., Brunet, Luttik, Silva, and Zanasi 2017].

Introduction

Theorem (Kozen 1994)
The axioms for KA are complete for equivalence:

$$
e \equiv_{\mathrm{KA}} f \Longleftrightarrow \llbracket e \rrbracket_{\mathrm{KA}}=\llbracket f \rrbracket_{\mathrm{KA}}
$$

$\llbracket-\rrbracket_{\text {KA }}$ is the regular language interpretation of e.

Introduction

Theorem (Kozen 1994)

The axioms for KA are complete for equivalence:

$$
e \equiv_{\mathrm{KA}} f \Longleftrightarrow \llbracket e \rrbracket_{\mathrm{KA}}=\llbracket f \rrbracket_{\mathrm{KA}}
$$

$\llbracket-\rrbracket_{\kappa A}$ is the regular language interpretation of e.

Question

Can we find axioms for CKA that are complete for equivalence? That is,

$$
e \equiv_{\text {СКА }} f \stackrel{?}{\Longleftrightarrow} \llbracket e \rrbracket_{\text {СКА }}=\llbracket f \rrbracket_{\text {CKA }}
$$

$\llbracket-\rrbracket_{\text {скА }}$ is a generalized regular language interpretation of e.

Caveat auditor

Completeness for CKA is also shown in [Laurence and Struth 2017]; c.f.

$$
\text { https://arxiv.org/abs/1705. } 05896
$$

Our method differs, because it. . .

- . . is fully syntactic
- ... uses fixpoints instead of congruences
- ... is explicitly constructive

We do owe part of our method to op. cit.

Preliminaries

- Pomset: "word with parallelism"

Preliminaries

- Pomset: "word with parallelism"

- Pomset language: set of pomsets

Preliminaries

- Pomset: "word with parallelism"

- Pomset language: set of pomsets
- Composition lifts:
- U $\cdot \mathcal{V}=\{U \cdot V: U \in U, V \in \mathcal{V}\}$
- U \| V $=\{U \| V: U \in U, V \in \mathcal{V}\}$

Preliminaries

- Pomset: "word with parallelism"

- Pomset language: set of pomsets
- Composition lifts:
- U $\cdot \mathcal{V}=\{U \cdot V: U \in U, V \in \mathcal{V}\}$
- U $\| \mathcal{V}=\{U \| V: U \in U, V \in \mathcal{V}\}$
- Kleene star: $\mathcal{U}^{*}=\bigcup_{n<\omega} \mathcal{U}^{n}$

Preliminaries

\mathcal{T} is the set generated by the grammar

$$
e, f::=0|1| a \in \Sigma|e+f| e \cdot f|e \| f| e^{*}
$$

Preliminaries

\mathcal{T} is the set generated by the grammar

$$
e, f::=0|1| a \in \Sigma|e+f| e \cdot f|e \| f| e^{*}
$$

BKA semantics is given by $\llbracket-\rrbracket_{\text {BKA }}: \mathcal{T} \rightarrow 2^{\text {Pom }_{\Sigma}}$.

$$
\llbracket e^{*} \rrbracket_{\mathrm{BKA}}=\llbracket e \rrbracket_{\mathrm{BKA}}^{*}
$$

$$
\begin{aligned}
& \llbracket 0 \rrbracket_{\text {BKA }}=\emptyset \\
& \llbracket e+f \rrbracket_{\text {вКА }}=\llbracket e \rrbracket_{\text {вКА }} \cup \llbracket f \rrbracket_{\text {ВКА }} \\
& \llbracket 1 \rrbracket_{\text {BKA }}=\{1\} \quad \llbracket e \cdot f \rrbracket_{\text {BKA }}=\llbracket e \rrbracket_{\text {BKA }} \cdot \llbracket f \rrbracket_{\text {BKA }} \\
& \llbracket a \rrbracket_{\text {BKA }}=\{a\} \\
& \llbracket e\left\|f \rrbracket_{\text {BKА }}=\llbracket e \rrbracket_{\text {ВКА }}\right\| \llbracket f \rrbracket_{\text {ВКА }}
\end{aligned}
$$

Preliminaries

Axioms for BKA :

$$
e+0 \equiv_{\text {ВКА }} e \quad e \cdot 1 \equiv_{\text {BKA }} e \equiv_{\text {ВКА }} 1 \cdot e \quad e \cdot 0 \equiv_{\text {ВКА }} 0 \equiv_{\text {ВKA }} 0 \cdot e
$$

$$
e+e \equiv_{\text {ВКА }} e \quad e+f \equiv_{\text {BKA }} f+e \quad e+(f+g) \equiv_{\text {BKA }}(f+g)+h
$$

Preliminaries

Axioms for BKA :

$e+e \equiv_{\text {BKA }} e$	$e+f \equiv_{\text {BKA }} f+e$	$e+(f+g) \equiv_{\text {ВКА }}(f+g)+h$

$1+e \cdot e^{*} \equiv_{\mathrm{BKA}} e^{*}$	$e \cdot f+g \equiv_{\mathrm{BKA}} f \Longrightarrow e^{*} \cdot g \leqq_{\mathrm{BKA}} f$								
$e\left\\|f \equiv_{\mathrm{BKA}} f\right\\| e$	$e \\| 1 \equiv_{\mathrm{BKA}} e$	$e \\| 0 \equiv_{\mathrm{BKA}} 0$							
$e\left\\|(f \\| g) \equiv_{\mathrm{BKA}}(e \\| f)\right\\| g$	$e\left\\|(f+g) \equiv_{B K A} e\right\\| f+e \\| g$								

Preliminaries

Axioms for BKA :

$e+0 \equiv_{\text {вКА }} e$	$e \cdot 1 \equiv_{\text {BKA }} e \equiv_{\text {BKA }} 1 \cdot e$	$e \cdot 0 \equiv_{\text {ВКА }} 0 \equiv_{\text {ВКА }} 0 \cdot e$
$e+e \equiv_{\text {вКА }} e$	$0+f={ }_{\text {BKA }} f+e \quad e$	$g)={ }_{\text {BKA }}(f+g)+h$
$e \cdot(f \cdot g) \equiv_{\text {ВКА }}(e \cdot f) \cdot g$	$e \cdot(f+g) \equiv_{\text {ВКА }} e \cdot f+e \cdot h$	$(e+f) \cdot g \equiv_{\text {вКА }} e \cdot g+f \cdot g$

$1+e \cdot e^{*} \equiv_{\text {BKA }} e^{*}$	$e \cdot f+g \leqq_{\text {BKA }} f \Longrightarrow$	$e^{*} \cdot g \leqq_{\text {BKA }} f$							
$e\left\\|f \equiv_{\text {BKA }} f\right\\| e$	$e \\| 1 \equiv_{\text {BKA }} e$	$e \\| 0 \equiv_{\text {BKA }} 0$							
$e\left\\|(f \\| g) \equiv_{\text {BKA }}(e \\| f)\right\\| g$	$e\left\\|(f+g) \equiv_{\text {BKA }} e\right\\| f+e \\| g$								

Preliminaries

Axioms for BKA :

Preliminaries

Axioms for BKA :

Preliminaries

Theorem (Laurence and Struth 2014)

The axioms for BKA are complete for equivalence:

$$
e \equiv_{\text {вКА }} f \Longleftrightarrow \llbracket e \rrbracket_{\text {вКА }}=\llbracket f \rrbracket_{\text {ВКА }}
$$

Preliminaries

- Pomset subsumption:

$$
\begin{array}{ll}
a \longrightarrow c & a \longrightarrow c \\
b \longrightarrow d & \sqsubseteq \\
b \longrightarrow d
\end{array}
$$

Preliminaries

- Pomset subsumption:

$U \sqsubseteq V: U$ is "more sequential" than V

Preliminaries

- Pomset subsumption:

$U \sqsubseteq V: U$ is "more sequential" than V
- Closure under pomset subsumption: $\mathfrak{U} \downarrow=\left\{U^{\prime} \sqsubseteq U: U \in \mathcal{U}\right\}$
$\mathcal{U} \downarrow$: all "sequentialisations" of pomsets in \mathcal{U}.

Preliminaries

- CKA semantics: $\llbracket e \rrbracket_{\text {CKA }}=\llbracket e \rrbracket_{\text {вKA }} \downarrow$.

Preliminaries

- CKA semantics: $\llbracket e \rrbracket_{\text {СкА }}=\llbracket e \rrbracket_{\text {вкА }} \downarrow$.
- For instance

$$
\begin{aligned}
\llbracket a \| b \rrbracket_{\text {BKA }} & =\{a \| b\} \\
\llbracket a \| b \rrbracket_{\text {CKA }} & =\{a \| b, a b, b a\}
\end{aligned}
$$

Preliminaries

- CKA semantics: $\llbracket e \rrbracket_{\text {СКА }}=\llbracket e \rrbracket_{\text {BKA }} \downarrow$.
- For instance

$$
\begin{aligned}
& \llbracket a \| b \rrbracket_{\text {BKA }}=\{a \| b\} \\
& \llbracket a \| b \rrbracket_{\text {СКА }}=\{a \| b, a b, b a\}
\end{aligned}
$$

- Axioms to build $\equiv_{\text {СКА }}$: all axioms for $\equiv_{\text {ВКА }}$, as well as the exchange law:

$$
(e \| f) \cdot(g \| h) \leqq_{\text {СКА }}(e \cdot g) \|(f \cdot h)
$$

Preliminaries

- CKA semantics: $\llbracket e \rrbracket_{\text {СКА }}=\llbracket e \rrbracket_{\text {BKA }} \downarrow$.
- For instance

$$
\begin{aligned}
& \llbracket a \| b \rrbracket_{\text {BKA }}=\{a \| b\} \\
& \llbracket a \| b \rrbracket_{\text {СКА }}=\{a \| b, a b, b a\}
\end{aligned}
$$

- Axioms to build $\equiv_{\text {СКА }}$: all axioms for $\equiv_{\text {ВКА }}$, as well as the exchange law:

$$
(e \| f) \cdot(g \| h) \leqq_{\text {СКА }}(e \cdot g) \|(f \cdot h)
$$

Lemma (Hoare, Möller, Struth, and Wehrman 2009)

The axioms of CKA are sound for equivalence, i.e.,

$$
e \equiv_{\text {СКА }} f \Longrightarrow \llbracket e \rrbracket_{\text {СKA }}=\llbracket f \rrbracket_{\text {СКА }}
$$

Preliminaries

Theorem (Kozen 1994)

Let M be an n-by-n matrix over \mathcal{T}, and \vec{b} an n-dimensional vector over \mathcal{T}.
The inequation $M \cdot \vec{x}+\vec{b} \leqq_{K A} \vec{x}$ admits a unique least solution (with respect to $\leqq_{K A}$).

Preliminaries

Theorem (Kozen 1994)

Let M be an n-by-n matrix over \mathcal{T}, and \vec{b} an n-dimensional vector over \mathcal{T}.
The inequation $M \cdot \vec{x}+\vec{b} \leqq_{K A} \vec{x}$ admits a unique least solution (with respect to $\leqq_{K A}$).

- This "fixpoint" can be constructed fully syntactically.

Preliminaries

Theorem (Kozen 1994)

Let M be an n-by-n matrix over \mathcal{T}, and \vec{b} an n-dimensional vector over \mathcal{T}.
The inequation $M \cdot \vec{x}+\vec{b} \leqq_{К А} \vec{x}$ admits a unique least solution (with respect to $\leqq_{\kappa А}$).

- This "fixpoint" can be constructed fully syntactically.
- The same works for BKA and CKA.

Preliminaries

Theorem (Kozen 1994)

Let M be an n-by-n matrix over \mathcal{T}, and \vec{b} an n-dimensional vector over \mathcal{T}.
The inequation $M \cdot \vec{x}+\vec{b} \leqq_{К А} \vec{x}$ admits a unique least solution (with respect to $\leqq_{\kappa А}$).

- This "fixpoint" can be constructed fully syntactically.
- The same works for BKA and CKA.
- In fact, the solution is the same in both systems!

Preliminaries

Theorem (Kozen 1994)

Let M be an n-by-n matrix over \mathcal{T}, and \vec{b} an n-dimensional vector over \mathcal{T}.
The inequation $M \cdot \vec{x}+\vec{b} \leqq_{К А} \vec{x}$ admits a unique least solution (with respect to $\leqq_{\kappa А}$).

- This "fixpoint" can be constructed fully syntactically.
- The same works for BKA and CKA.
- In fact, the solution is the same in both systems!
- We use this as a device to find specific terms later on.

Closure

Definition

Let $e \in \mathcal{T}$; a closure of e is a term $e \downarrow$ such that
$1 e \downarrow \equiv_{\text {CKA }} e$
(2. $\llbracket e \rrbracket_{\text {CKA }}=\llbracket e \downarrow \rrbracket_{\text {BKA }}$

Closure

Definition

Let $e \in \mathcal{T}$; a closure of e is a term $e \downarrow$ such that
$11 e \downarrow \equiv_{\text {СКА }} e$
2 $\llbracket e \rrbracket_{\text {СКА }}=\llbracket e \downarrow \rrbracket_{\text {ВКА }}$

Lemma (Laurence and Struth 2017)

If every term e has a closure e \downarrow, then $\llbracket e \rrbracket_{\text {CKA }}=\llbracket f \rrbracket_{\text {СКА }}$ implies $e \equiv_{\text {СКА }} f$.

Closure

Definition

Let $e \in \mathcal{T}$; a closure of e is a term $e \downarrow$ such that
$11 e \downarrow \equiv_{\text {СКА }} e$
2 $\llbracket e \rrbracket_{\text {СКА }}=\llbracket e \downarrow \rrbracket_{\text {BKA }}$

Lemma (Laurence and Struth 2017)

If every term e has a closure e \downarrow, then $\llbracket e \rrbracket_{\text {СКА }}=\llbracket f \rrbracket_{\text {СКА }}$ implies $e \equiv_{\text {СКА }} f$.

Proof.

Observe that $\llbracket e \downarrow \rrbracket_{\text {ВКА }}=\llbracket f \downarrow \rrbracket_{\text {ВКА }}$, and therefore $e \equiv_{\text {СкА }} e \downarrow \equiv_{\text {вкА }} f \downarrow \equiv_{\text {СКА }} f$.

Closure

Lemma

If e, f have closures $e \downarrow$ and $f \downarrow$ respectively, then
$11 e \downarrow+f \downarrow$ is a closure of $e+f$
$2 e \downarrow \cdot f \downarrow$ is a closure of $e \cdot f$
B $e \downarrow^{*}$ is a closure of e^{*}

Closure

Lemma

If e, f have closures $e \downarrow$ and $f \downarrow$ respectively, then
$1 \quad e \downarrow+f \downarrow$ is a closure of $e+f$
$2 e \downarrow \cdot f \downarrow$ is a closure of $e \cdot f$
(3 $e \downarrow^{*}$ is a closure of e^{*}

One case remains: parallel composition.

Closure

Lemma

If e, f have closures $e \downarrow$ and $f \downarrow$ respectively, then
$11 e \downarrow+f \downarrow$ is a closure of $e+f$
$2 e \downarrow \cdot f \downarrow$ is a closure of e f
B $e \downarrow^{*}$ is a closure of e^{*}

One case remains: parallel composition.
Induction hypothesis: for $e \in \mathcal{T}$, we assume that:

- If f is a strict subterm of e, we can construct $f \downarrow$.
- If $|f|<|e|$ we can construct $f \downarrow$. ${ }^{2}$

[^1]
Closure

Sketch: given e\|f, apply exchange law syntactically, "in the limit".

Closure

Sketch: given $e \| f$, apply exchange law syntactically, "in the limit".
For instance: if $e=a \cdot b$ and $f=c \cdot d$:

- $(a \| c) \cdot(b \| d) \leqq_{\text {СКА }} e \| f$

$$
(e=a \bullet b, f=c \bullet d)
$$

Closure

Sketch: given e\|f, apply exchange law syntactically, "in the limit".
For instance: if $e=a \cdot b$ and $f=c \cdot d$:

- $(a \| c) \cdot(b \| d) \leqq_{\text {СКА }} e \| f$

$$
\begin{array}{r}
(e=a \bullet b, f=c \bullet d) \\
(e=a \bullet b, f=1 \bullet c \cdot d)
\end{array}
$$

Closure

Sketch: given e\|f, apply exchange law syntactically, "in the limit".
For instance: if $e=a \cdot b$ and $f=c \cdot d$:

- $(a \| c) \cdot(b \| d) \leqq_{\text {СКА }} e \| f$
- $(a \| 1) \cdot(b \|(c \cdot d)) \leqq_{\text {СКА }} e \| f$
$-(1 \| c) \cdot((a \cdot b) \| d) \leqq_{\text {СКА }} e \| f$

$$
\begin{array}{r}
(e=a \bullet b, f=c \bullet d) \\
(e=a \bullet b, f=1 \bullet c \cdot d) \\
(e=1 \bullet a \cdot b, f=c \bullet d)
\end{array}
$$

Closure

Sketch: given e\|f, apply exchange law syntactically, "in the limit".
For instance: if $e=a \cdot b$ and $f=c \cdot d$:
$\square(a \| c) \cdot(b \| d) \leqq_{\text {СКА }} e \| f$

$$
\begin{array}{r}
(e=a \bullet b, f=c \bullet d) \\
(e=a \bullet b, f=1 \bullet c \cdot d) \\
(e=1 \bullet a \cdot b, f=c \bullet d)
\end{array}
$$

- $(a \| 1) \cdot(b \|(c \cdot d)) \leqq_{\text {СКА }} e \| f$
- $(1 \| c) \cdot((a \cdot b) \| d) \leqq_{\text {СКА }} e \| f$

Goal: find enough of these terms to cover all pomsets in $\llbracket e \| f \rrbracket_{\text {CKA }}$.

Closure

Obstacles to overcome:

- How to split terms e and f into heads and tails?

Closure

Obstacles to overcome:

- How to split terms e and f into heads and tails?
- What to do about recursion? For instance,

$$
(e \| f) \cdot\left(e^{*} \| f^{*}\right) \leqq_{\text {CKA }} e^{*} \| f^{*}
$$

Closure

Obstacles to overcome:

- How to split terms e and f into heads and tails?
[客 splicing relations
- What to do about recursion? For instance,

$$
(e \| f) \cdot\left(e^{*} \| f^{*}\right) \leqq_{\text {CKA }} e^{*} \| f^{*}
$$

Closure

Obstacles to overcome:

- How to split terms e and f into heads and tails?
- What to do about recursion? For instance,
[容 splicing relations
[菅 fixpoints of inequations

$$
(e \| f) \cdot\left(e^{*} \| f^{*}\right) \leqq_{\text {CKA }} e^{*} \| f^{*}
$$

Closure

Definition
Let $e \in \mathcal{T}$. We define $\nabla_{e} \subseteq \mathcal{T} \times \mathcal{T}$ as the smallest relation such that

$$
\begin{array}{ccccc}
\overline{1 \nabla_{1} 1} & \overline{a \nabla_{a} 1} \quad \overline{1 \nabla_{a} a} & \overline{1 \nabla_{e^{*}} 1} \quad \frac{\ell \nabla_{e} r}{\ell \nabla_{e+f} r} & \frac{\ell \nabla_{f} r}{\ell \nabla_{e+f} r} \\
\frac{\ell \nabla_{e} r}{\ell \nabla_{e \cdot f} r \cdot f} & \frac{\ell \nabla_{f} r}{e \cdot \ell \nabla_{e \cdot f} r} & \frac{\ell_{0} \nabla_{e} r_{0} \quad \ell_{1} \nabla_{f} r_{1}}{\ell_{0}\left\|\ell_{1} \nabla_{e \| f} r_{0}\right\| r_{1}} & \frac{\ell \nabla_{e} r}{e^{*} \cdot \ell \nabla_{e^{*}} r \cdot e^{*}}
\end{array}
$$

Lemma
Let $e \in \mathcal{T}$ and $U \cdot V \in \llbracket e \rrbracket_{\text {ШСКА }}$; there exist $\ell \nabla_{e} r$ such that $U \in \llbracket \ell \rrbracket_{\text {СКА }}$ and $V \in \llbracket r \rrbracket_{\text {СКА }}$.

Closure

Suppose that for all $g, h \in \mathcal{T}$, we have that $X_{g \| h}$ is a closure of $g \| h$.
Then we find

$$
e \| f+\sum_{\substack{\ell_{e} \nabla_{e} r_{e} \\ \ell_{f} \nabla_{f} r_{f}}}\left(\ell_{e} \| \ell_{f}\right) \cdot\left(r_{e} \| r_{f}\right) \leqq_{\text {СКА }} X_{e \| f}
$$

Closure

Suppose that for all $g, h \in \mathcal{T}$, we have that $X_{g \| h}$ is a closure of $g \| h$.
Then we find

$$
e \| f+\sum_{\substack{\ell_{e} \nabla_{e} r_{e} \\ \ell_{f} \nabla_{f} r_{f}}}\left(\ell_{e} \| \ell_{f}\right) \cdot X_{r_{e} \| r_{f}} \leqq_{\text {СКА }} X_{e \| f}
$$

Closure

Suppose that for all $g, h \in \mathcal{T}$, we have that $X_{g \| h}$ is a closure of $g \| h$.
Then we find

$$
e \| f+\sum_{\substack{\ell_{e} \nabla_{e} r_{e} \\ \ell_{f} \nabla_{f} r_{f}}}\left(\ell_{e} \| \ell_{f}\right) \cdot X_{r_{e} \| r_{f}} \leqq_{\text {СКА }} X_{e \| f}
$$

For $X_{r_{e} \| r_{f}}$, we find another inequation, et cetera. . .

Closure

Suppose that for all $g, h \in \mathcal{T}$, we have that $X_{g \| h}$ is a closure of $g \| h$.
Then we find

$$
e \| f+\sum_{\substack{\ell_{e} \nabla_{e} r_{e} \\ \ell_{f} \nabla_{f} r_{f}}}\left(\ell_{e} \| \ell_{f}\right) \cdot X_{r_{e} \| r_{f}} \leqq_{\text {СКА }} X_{e \| f}
$$

For $X_{r_{e}} \|_{f}$, we find another inequation, et cetera. .

Lemma

Continuing this, we get a finite system of inequations $\langle M, \vec{b}\rangle_{e \| f}$.

Closure

```
Theorem
Let e \(\otimes f\) be the least solution to \(X_{e \| f}\) in \(\langle M, \vec{b}\rangle_{e \| f}\). Then the following hold:
    (1) \(e \otimes f \equiv_{\text {СкА }} e \| f\)
② \(\llbracket e \otimes f \rrbracket_{\text {ВКА }}=\llbracket e \| f \rrbracket_{\text {СКА }}\)
In other words, \(e \otimes f\) is a closure of \(\boldsymbol{\|} \|\).
```


Closure

```
Theorem
Let \(e \otimes f\) be the least solution to \(X_{e \| f}\) in \(\langle M, \vec{b}\rangle_{e \| f}\). Then the following hold:
\(11 e \otimes f \equiv_{\text {СКА }} e \| f\)
2 \(\llbracket e \otimes f \rrbracket_{\text {ВКА }}=\llbracket e \| f \rrbracket_{\text {СКА }}\)
In other words, \(e \otimes f\) is a closure of \(e \| f\).
```


Theorem

If $e \in \mathcal{T}$, then we can compute a term $e \downarrow$ that is a closure of e.

Closure

Theorem

Let e $\otimes f$ be the least solution to $X_{e \| f}$ in $\langle M, \vec{b}\rangle_{e \| f}$. Then the following hold:
$11 \boldsymbol{e} \otimes f \equiv_{\text {СКА }} \boldsymbol{e} \| f$
2 $\llbracket e \otimes f \rrbracket_{\text {ВКА }}=\llbracket e \| f \rrbracket_{\text {СКА }}$
In other words, e $\otimes f$ is a closure of $e \| f$.

Theorem

If $e \in \mathcal{T}$, then we can compute a term $e \downarrow$ that is a closure of e.

Corollary

Let $e, f \in \mathcal{T}$ be such that $\llbracket e \rrbracket_{\text {CKA }}=\llbracket f \rrbracket_{\text {СКА }}$; then $e \equiv_{\text {СКА }} f$.

Conclusion

- Axiomatised equality of closed, series-rational pomset languages.
- Results establishes these as the carrier of the free CKA.
- Extends half of earlier Kleene theorem: terms to pomset automata.
- We also obtain a novel (but inefficient) decision procedure.

Further work

- Explore coalgebraic perspective:
- Efficient equivalence checking through bisimulation?
- Can completeness be shown coalgebraically?
- Add "parallel star" operator - closure method does not apply.
- Endgame: lift results to KAT, then NetKAT.

Thank you for your attention

GONeGO

Implementation: https://doi.org/10.5281/zenodo. 926651. Draft paper: https://arxiv.org/abs/1710.02787.

[^0]: ${ }^{1}$ Hoare, Möller, Struth, and Wehrman 2009.

[^1]: ${ }^{2}|e|$ is the nesting level of e w.r.t. ||

