Reasoning about Program Equivalence using (Prob)GKAT

Tobias Kappé

Open University of The Netherlands Institute for Logic, Language and Computation, University of Amsterdam

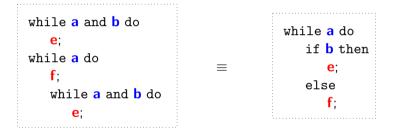
OUrsi Seminar — October 22, 2022

Joint work with ...

Motivation: comparing programs

Motivation: comparing programs

A more complicated equivalence



Initial questions

- What is the minimal set of axioms?
- Are those axioms complete w.r.t. some model?
- Can we decide axiomatic equivalence?

$$\mathbf{a},\mathbf{b}::=t\in \mathcal{T}\mid \mathbf{a}+\mathbf{b}\mid \mathbf{ab}\mid \overline{\mathbf{a}}\mid 0\mid 1$$

$$\mathbf{e}, \mathbf{f} ::= \mathbf{a} \mid \mathbf{p} \in \Sigma \mid \mathbf{ef} \mid \mathbf{e} +_{\mathbf{a}} \mathbf{f} \mid \mathbf{e}^{(\mathbf{a})}$$

Treat while-programs as expressions — c.f. (Kozen and Tseng 2008).

$$\mathbf{a}, \mathbf{b} ::= t \in \mathcal{T} \mid \mathbf{a} + \mathbf{b} \mid \mathbf{ab} \mid \overline{\mathbf{a}} \mid \mathbf{0} \mid \mathbf{1}$$
 $\mathbf{a} \text{ or } \mathbf{b}$

 $\mathbf{e}, \mathbf{f} ::= \mathbf{a} \mid \mathbf{p} \in \Sigma \mid \mathbf{ef} \mid \mathbf{e} +_{\mathbf{a}} \mathbf{f} \mid \mathbf{e}^{(\mathbf{a})}$

Treat while-programs as expressions — c.f. (Kozen and Tseng 2008).

$$\mathbf{a}, \mathbf{b} ::= t \in T \mid \mathbf{a} + \mathbf{b} \mid \mathbf{ab} \mid \overline{\mathbf{a}} \mid 0 \mid 1$$

 $\mathbf{a} \text{ and } \mathbf{b}$

 $\mathbf{e}, \mathbf{f} ::= \mathbf{a} \mid \mathbf{p} \in \Sigma \mid \mathbf{ef} \mid \mathbf{e} +_{\mathbf{a}} \mathbf{f} \mid \mathbf{e}^{(\mathbf{a})}$

Treat while-programs as expressions — c.f. (Kozen and Tseng 2008).

$$\mathbf{a},\mathbf{b} ::= t \in \mathcal{T} \mid \mathbf{a} + \mathbf{b} \mid \mathbf{ab} \mid \overline{\mathbf{a}} \mid \mathbf{0} \mid \mathbf{1}$$
not a

 $\mathbf{e}, \mathbf{f} ::= \mathbf{a} \mid p \in \Sigma \mid \mathbf{ef} \mid \mathbf{e} +_{\mathbf{a}} \mathbf{f} \mid \mathbf{e}^{(\mathbf{a})}$

Treat while-programs as expressions — c.f. (Kozen and Tseng 2008).

$$\mathbf{a}, \mathbf{b} ::= t \in \mathcal{T} \mid \mathbf{a} + \mathbf{b} \mid \mathbf{ab} \mid \overline{\mathbf{a}} \mid \mathbf{0} \mid \mathbf{1}$$
false

 $\mathbf{e}, \mathbf{f} ::= \mathbf{a} \mid \mathbf{p} \in \Sigma \mid \mathbf{ef} \mid \mathbf{e} +_{\mathbf{a}} \mathbf{f} \mid \mathbf{e}^{(\mathbf{a})}$

Treat while-programs as expressions — c.f. (Kozen and Tseng 2008).

$$\mathbf{a}, \mathbf{b} ::= t \in \mathcal{T} \mid \mathbf{a} + \mathbf{b} \mid \mathbf{ab} \mid \overline{\mathbf{a}} \mid \mathbf{0} \mid \mathbf{1}$$
true

 $\mathbf{e}, \mathbf{f} ::= \mathbf{a} \mid p \in \Sigma \mid \mathbf{ef} \mid \mathbf{e} +_{\mathbf{a}} \mathbf{f} \mid \mathbf{e}^{(\mathbf{a})}$

$$\mathbf{a}, \mathbf{b} ::= t \in T \mid \mathbf{a} + \mathbf{b} \mid \mathbf{ab} \mid \overline{\mathbf{a}} \mid \mathbf{0} \mid \mathbf{1}$$

$$\mathbf{e},\mathbf{f}::=\mathbf{a}\mid p\in\Sigma\mid\mathbf{ef}\mid\mathbf{e}+_{\mathbf{a}}\mathbf{f}\mid\mathbf{e}^{(\mathbf{a})}$$

assert a

$$\mathbf{a},\mathbf{b}::=t\in \mathcal{T}\mid \mathbf{a}+\mathbf{b}\mid \mathbf{ab}\mid \overline{\mathbf{a}}\mid 0\mid 1$$

$$\mathbf{e}, \mathbf{f} ::= \mathbf{a} \mid \mathbf{p} \in \Sigma \mid \mathbf{ef} \mid \mathbf{e} +_{\mathbf{a}} \mathbf{f} \mid \mathbf{e}^{(\mathbf{a})}$$

$$\mathbf{a}, \mathbf{b} ::= t \in T \mid \mathbf{a} + \mathbf{b} \mid \mathbf{ab} \mid \overline{\mathbf{a}} \mid \mathbf{0} \mid \mathbf{1}$$

$$\mathbf{e}, \mathbf{f} ::= \mathbf{a} \mid p \in \Sigma \mid \mathbf{ef} \mid \mathbf{e} +_{\mathbf{a}} \mathbf{f} \mid \mathbf{e}^{(\mathbf{a})}$$

 $\mathbf{e}; \mathbf{f}$

$$\mathbf{a},\mathbf{b}::=t\in \mathcal{T}\mid \mathbf{a}+\mathbf{b}\mid \mathbf{ab}\mid \overline{\mathbf{a}}\mid 0\mid 1$$

e, f ::= a |
$$p \in \Sigma$$
 | ef | e +_a f | e^(a)
if a then e else f

$$\mathbf{a}, \mathbf{b} ::= t \in T \mid \mathbf{a} + \mathbf{b} \mid \mathbf{ab} \mid \overline{\mathbf{a}} \mid \mathbf{0} \mid \mathbf{1}$$

$$\mathbf{e},\mathbf{f}::=\mathbf{a}\mid p\in\Sigma\mid\mathbf{ef}\mid\mathbf{e}+_{\mathbf{a}}\mathbf{f}\mid\mathbf{e}^{(\mathbf{a})}$$
 while \mathbf{a} do \mathbf{e}

 $\mathbf{e} +_{\mathbf{a}} \mathbf{e} \equiv \mathbf{e}$

 $\mathbf{e} +_{\mathbf{a}} \mathbf{e} \equiv \mathbf{e}$ $\mathbf{e} +_{\mathbf{a}} \mathbf{f} \equiv \mathbf{f} +_{\overline{\mathbf{a}}} \mathbf{e}$

$$e +_a e \equiv e$$
 $e +_a f \equiv f +_{\overline{a}} e$ $e +_a f \equiv ae +_a f$

$$\mathbf{e} +_{\mathbf{a}} \mathbf{e} \equiv \mathbf{e}$$
 $\mathbf{e} +_{\mathbf{a}} \mathbf{f} \equiv \mathbf{f} +_{\overline{\mathbf{a}}} \mathbf{e}$ $\mathbf{e} +_{\mathbf{a}} \mathbf{f} \equiv \mathbf{a} \mathbf{e} +_{\mathbf{a}} \mathbf{f}$ $\overline{\mathbf{a}} \mathbf{a} \equiv \mathbf{0}$

$$\mathbf{e} +_{\mathbf{a}} \mathbf{e} \equiv \mathbf{e}$$
 $\mathbf{e} +_{\mathbf{a}} \mathbf{f} \equiv \mathbf{f} +_{\overline{\mathbf{a}}} \mathbf{e}$ $\mathbf{e} +_{\mathbf{a}} \mathbf{f} \equiv \mathbf{a} \mathbf{e} +_{\mathbf{a}} \mathbf{f}$ $\overline{\mathbf{a}} \mathbf{a} \equiv 0$ $0 \mathbf{e} \equiv 0$

$$\mathbf{e} + \mathbf{a} \mathbf{e} \equiv \mathbf{e}$$
 $\mathbf{e} + \mathbf{a} \mathbf{f} \equiv \mathbf{f} + \mathbf{a} \mathbf{e}$ $\mathbf{e} + \mathbf{a} \mathbf{f} \equiv \mathbf{a} \mathbf{e} + \mathbf{a} \mathbf{f}$ $\overline{\mathbf{a}} \mathbf{a} \equiv 0$ $0 \mathbf{e} \equiv 0$

if a then ${\bf e}$ else assert false = ${\bf e} +_{\bf a} {\bf 0}$

$$\mathbf{e} +_{\mathbf{a}} \mathbf{e} \equiv \mathbf{e}$$
 $\mathbf{e} +_{\mathbf{a}} \mathbf{f} \equiv \mathbf{f} +_{\overline{\mathbf{a}}} \mathbf{e}$ $\begin{vmatrix} \mathbf{e} +_{\mathbf{a}} \mathbf{f} \equiv \mathbf{a} \mathbf{e} +_{\mathbf{a}} \mathbf{f} \end{vmatrix}$ $\overline{\mathbf{a}} \mathbf{a} \equiv 0$ $0 \mathbf{e} \equiv 0$

if a then ${\bf e}$ else assert false = ${\bf e} +_{\bf a} 0 \equiv {\bf ae} +_{\bf a} 0$

$$\mathbf{e} +_{\mathbf{a}} \mathbf{e} \equiv \mathbf{e}$$
 $\mathbf{e} +_{\mathbf{a}} \mathbf{f} \equiv \mathbf{f} +_{\overline{\mathbf{a}}} \mathbf{e}$ $\mathbf{e} +_{\mathbf{a}} \mathbf{f} \equiv \mathbf{a} \mathbf{e} +_{\mathbf{a}} \mathbf{f}$ $\overline{\mathbf{a}} \mathbf{a} \equiv 0$ $0 \mathbf{e} \equiv 0$

if a then
$${\bf e}$$
 else assert false = ${\bf e} +_{\bf a} \, {\bf 0} \equiv {\bf a} {\bf e} +_{\bf a} \, {\bf 0}$
$$\equiv {\bf 0} +_{\overline{\bf a}} \, {\bf a} {\bf e}$$

$$\mathbf{e} +_{\mathbf{a}} \mathbf{e} \equiv \mathbf{e}$$
 $\mathbf{e} +_{\mathbf{a}} \mathbf{f} \equiv \mathbf{f} +_{\overline{\mathbf{a}}} \mathbf{e}$ $\mathbf{e} +_{\mathbf{a}} \mathbf{f} \equiv \mathbf{a} \mathbf{e} +_{\mathbf{a}} \mathbf{f}$ $\overline{\mathbf{a}} \mathbf{a} \equiv 0$ $0 \mathbf{e} \equiv 0$

if a then e else assert false =
$$e +_a 0 \equiv ae +_a 0$$

 $\equiv 0 +_{\overline{a}} ae$
 $\equiv 0e +_{\overline{a}} ae$

_ _ _ _ _ _ _

$$\mathbf{e} +_{\mathbf{a}} \mathbf{e} \equiv \mathbf{e}$$
 $\mathbf{e} +_{\mathbf{a}} \mathbf{f} \equiv \mathbf{f} +_{\overline{\mathbf{a}}} \mathbf{e}$ $\mathbf{e} +_{\mathbf{a}} \mathbf{f} \equiv \mathbf{a} \mathbf{e} +_{\mathbf{a}} \mathbf{f}$ $|\overline{\mathbf{a}} \mathbf{a} \equiv 0|$ $0 \mathbf{e} \equiv 0$

_ _ _ _ _ _ _

if a then e else assert false =
$$e +_a 0 \equiv ae +_a 0$$

 $\equiv 0 +_{\overline{a}} ae$
 $\equiv 0e +_{\overline{a}} ae$
 $\equiv \overline{a}ae +_{\overline{a}} ae$

$$\mathbf{e} +_{\mathbf{a}} \mathbf{e} \equiv \mathbf{e}$$
 $\mathbf{e} +_{\mathbf{a}} \mathbf{f} \equiv \mathbf{f} +_{\overline{\mathbf{a}}} \mathbf{e}$ $\begin{vmatrix} \mathbf{e} +_{\mathbf{a}} \mathbf{f} \equiv \mathbf{a} \mathbf{e} +_{\mathbf{a}} \mathbf{f} \end{vmatrix}$ $\overline{\mathbf{a}} \mathbf{a} \equiv 0$ $0 \mathbf{e} \equiv 0$

if a then e else assert false = $e +_a 0 \equiv ae +_a 0$ $\equiv 0 +_{\overline{a}} ae$ $\equiv \overline{0}e +_{\overline{a}} ae$ $\equiv \overline{a}ae +_{\overline{a}} ae$ $\equiv ae +_{\overline{a}} ae$

$$|\mathbf{e} +_{\mathbf{a}} \mathbf{e} \equiv \mathbf{e}|$$
 $\mathbf{e} +_{\mathbf{a}} \mathbf{f} \equiv \mathbf{f} +_{\overline{\mathbf{a}}} \mathbf{e}$ $\mathbf{e} +_{\mathbf{a}} \mathbf{f} \equiv \mathbf{a} \mathbf{e} +_{\mathbf{a}} \mathbf{f}$ $\overline{\mathbf{a}} \mathbf{a} \equiv 0$ $0\mathbf{e} \equiv 0$

if a then e else assert false =
$$e +_a 0 \equiv ae +_a 0$$

 $\equiv 0 +_{\overline{a}} ae$
 $\equiv 0e +_{\overline{a}} ae$
 $\equiv \overline{a}ae +_{\overline{a}} ae$
 $\equiv ae +_{\overline{a}} ae$
 $\equiv ae = ae +_{\overline{a}} ae$

 $\mathbf{e} +_{\mathbf{a}} \mathbf{e} \equiv \mathbf{e} \qquad \mathbf{e} +_{\mathbf{a}} \mathbf{f} \equiv \mathbf{f} +_{\overline{\mathbf{a}}} \mathbf{e} \qquad (\mathbf{e} +_{\mathbf{a}} \mathbf{f}) +_{\mathbf{b}} \mathbf{g} \equiv \mathbf{e} +_{\mathbf{a}\mathbf{b}} (\mathbf{f} +_{\mathbf{b}} \mathbf{g})$ $\mathbf{e} +_{\mathbf{a}} \mathbf{f} \equiv \mathbf{a}\mathbf{e} +_{\mathbf{a}} \mathbf{f} \qquad \mathbf{e}\mathbf{g} +_{\mathbf{a}} \mathbf{f}\mathbf{g} \equiv (\mathbf{e} +_{\mathbf{a}} \mathbf{f})\mathbf{g} \qquad (\mathbf{e}\mathbf{f})\mathbf{g} \equiv \mathbf{e}(\mathbf{f}\mathbf{g}) \qquad \mathbf{0}\mathbf{e} \equiv \mathbf{0}$ $\mathbf{e}\mathbf{0} \equiv \mathbf{0} \qquad \mathbf{1}\mathbf{e} \equiv \mathbf{e} \qquad \mathbf{e}\mathbf{1} \equiv \mathbf{e} \qquad \mathbf{e}^{(\mathbf{a})} \equiv \mathbf{e}\mathbf{e}^{(\mathbf{a})} +_{\mathbf{a}}\mathbf{1} \qquad (\mathbf{e} +_{\mathbf{a}} \mathbf{1})^{(\mathbf{b})} \equiv (\mathbf{a}\mathbf{e})^{(\mathbf{b})}$

Fixpoints: If $\mathbf{fe} +_{\mathbf{b}} \mathbf{g} \equiv \mathbf{e}$ and \mathbf{e} is productive, then $\mathbf{f}^{(\mathbf{b})}\mathbf{g} \equiv \mathbf{e}$.

Fixpoints: If $\mathbf{fe} +_{\mathbf{b}} \mathbf{g} \equiv \mathbf{e}$ and \mathbf{e} is productive, then $\mathbf{f}^{(\mathbf{b})}\mathbf{g} \equiv \mathbf{e}$.

Unique solutions: affine systems of equations, i.e., of the form

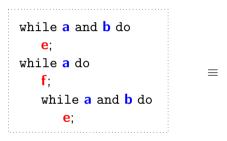
.

have at most one solution (up to \equiv) — provided the $\mathbf{e}_{i,j}$ are *productive*.

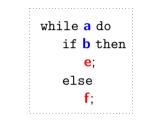
Theorem (Smolka et al. (2020))

- \blacktriangleright = is sound and complete w.r.t. a natural model.
- \blacktriangleright = is decidable in nearly-linear time (for a fixed number of tests).

A more complicated equivalence



 $e^{(ab)} \cdot (fe^{(ab)})^{(a)}$



 $(\mathbf{e} +_{\mathbf{b}} \mathbf{f})^{(\mathbf{a})}$

Followup questions

- What if we drop the axiom $e0 \equiv 0$?
- How expressive is this syntax?
- Can we simplify the last axiom?

Followup questions

- What if we drop the axiom $e0 \equiv 0$?
- How expressive is this syntax?
- Can we simplify the last axiom?

Third question remains open!

Intuition: "failing now is the same as failing later"

Intuition: "failing now is the same as failing later"

... but what if the actions before failure matter?

Provable in GKAT: $e^{(a)} \equiv e^{(a)}\overline{a}$.

Provable in GKAT:
$$e^{(a)} \equiv e^{(a)}\overline{a}$$
.

In particular,

while true do e end

Provable in GKAT:
$$e^{(a)} \equiv e^{(a)}\overline{a}$$
.

In particular,

while true do \mathbf{e} end $= \mathbf{e}^{(1)}$

Provable in GKAT:
$$e^{(a)} \equiv e^{(a)}\overline{a}$$
.

In particular,

while true do ${\bf e}$ end $= {\bf e}^{(1)}$ $\equiv {\bf e}^{(1)} \cdot \overline{1}$

Provable in GKAT:
$$e^{(a)} \equiv e^{(a)}\overline{a}$$
.

In particular,

while true do \mathbf{e} end $= \mathbf{e}^{(1)}$ $\equiv \mathbf{e}^{(1)} \cdot \overline{1}$ $\equiv \mathbf{e}^{(1)} \cdot \mathbf{0}$

Provable in GKAT:
$$e^{(a)} \equiv e^{(a)}\overline{a}$$
.

In particular,

while true do \mathbf{e} end $= \mathbf{e}^{(1)}$ $\equiv \mathbf{e}^{(1)} \cdot \overline{1}$ $\equiv \mathbf{e}^{(1)} \cdot \mathbf{0}$ $\equiv \mathbf{0}$ = assert false

Provable in GKAT:
$$e^{(a)} \equiv e^{(a)}\overline{a}$$
.

In particular,

while true do \mathbf{e} end $= \mathbf{e}^{(1)}$ $\equiv \mathbf{e}^{(1)} \cdot \overline{1}$ $\equiv \mathbf{e}^{(1)} \cdot \mathbf{0}$ $\equiv \mathbf{0}$ = assert false

Provable in GKAT:
$$e^{(a)} \equiv e^{(a)}\overline{a}$$
.

In particular,

while true do \mathbf{e} end $= \mathbf{e}^{(1)}$ $\equiv \mathbf{e}^{(1)} \cdot \overline{1}$ $\equiv \mathbf{e}^{(1)} \cdot \mathbf{0}$ $\equiv \mathbf{0}$ = assert false

See also (Mamouras 2017).

Mission statement

Question

Let \equiv_0 be like \equiv , but without relating **e**0 to 0.

Can we recover the same results for this finer equivalence?

Mission statement

Question

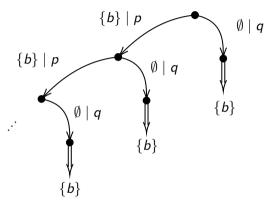
Let \equiv_0 be like \equiv , but without relating **e**0 to 0.

Can we recover the same results for this finer equivalence?

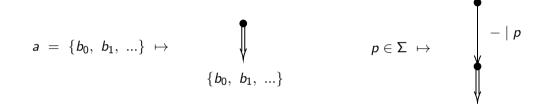
Roadmap:

- 1. Find a model satisfying the axioms.
- 2. Prove soundness and completeness.
- 3. Decide equivalence within that model.

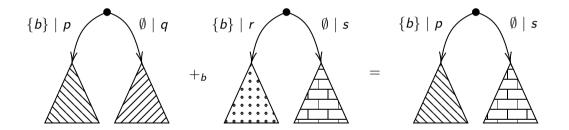
Guarded trees — example



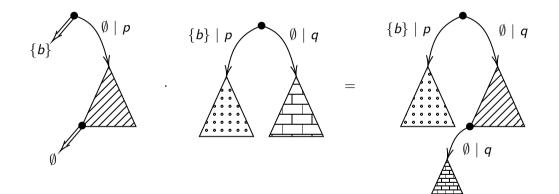
Expressions to trees — base case



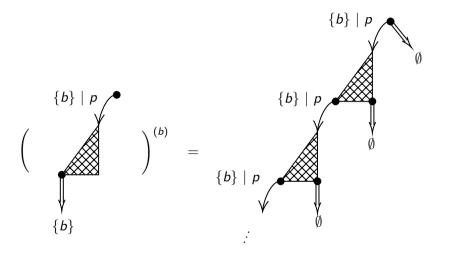
Expressions to trees — Party hat diagrams



Expressions to trees — Party hat diagrams



Expressions to trees — Party hat diagrams



Every expression \mathbf{e} has an associated guarded tree $[\![\mathbf{e}]\!]$.

Every expression \mathbf{e} has an associated guarded tree $[\![\mathbf{e}]\!]$.

The early termination axiom does *not* hold: $[e0] \neq [0]$.

Every expression **e** has an associated guarded tree **[e]**.

The early termination axiom does *not* hold: $[e0] \neq [0]$.

Question (Soundness & Completeness) Is $\mathbf{e} \equiv_0 \mathbf{f}$ equivalent to $[\mathbf{e}] = [\mathbf{f}]$?

Every expression **e** has an associated guarded tree **[e]**.

The early termination axiom does *not* hold: $[e0] \neq [0]$.

Question (Soundness & Completeness) Is $\mathbf{e} \equiv_0 \mathbf{f}$ equivalent to $[\![\mathbf{e}]\!] = [\![\mathbf{f}]\!]$?

Question (Decidability) Can we decide whether [e] = [f]?

From (Schmid et al. 2021):

From (Schmid et al. 2021):

Theorem (Soundness & Completeness) $\mathbf{e} \equiv_0 \mathbf{f}$ if and only if $\llbracket \mathbf{e} \rrbracket = \llbracket \mathbf{f} \rrbracket$

From (Schmid et al. 2021):

Theorem (Soundness & Completeness) $\mathbf{e} \equiv_0 \mathbf{f}$ if and only if $\llbracket \mathbf{e} \rrbracket = \llbracket \mathbf{f} \rrbracket$

Theorem (Decidability for trees) It is decidable whether [e] = [f] (proof is coalgebraic!)

From (Schmid et al. 2021):

Theorem (Soundness & Completeness) $\mathbf{e} \equiv_0 \mathbf{f}$ if and only if $\llbracket \mathbf{e} \rrbracket = \llbracket \mathbf{f} \rrbracket$

Theorem (Decidability for trees) It is decidable whether [e] = [f] (proof is coalgebraic!)

Corollary (Decidability for terms) It is decidable whether $\mathbf{e} \equiv_0 \mathbf{f}$

From (Schmid et al. 2021):

Theorem (Soundness & Completeness) $\mathbf{e} \equiv_0 \mathbf{f}$ if and only if $\llbracket \mathbf{e} \rrbracket = \llbracket \mathbf{f} \rrbracket$

Theorem (Decidability for trees) It is decidable whether [e] = [f] (proof is coalgebraic!)

Corollary (Decidability for terms) It is decidable whether $\mathbf{e} \equiv_0 \mathbf{f}$

Note: decision procedures are *nearly-linear* — actually feasible!

From (Schmid et al. 2021):

Theorem (Soundness & Completeness) $\mathbf{e} \equiv_0 \mathbf{f}$ if and only if $\llbracket \mathbf{e} \rrbracket = \llbracket \mathbf{f} \rrbracket$

Theorem (Decidability for trees) It is decidable whether [e] = [f] (proof is coalgebraic!)

Corollary (Decidability for terms) It is decidable whether $\mathbf{e} \equiv_0 \mathbf{f}$

Note: decision procedures are *nearly-linear* — actually feasible!

The "old" results from (Smolka et al. 2020) can be recovered from these.

Question

Let t be a guarded tree with finitely many distinct subtrees.

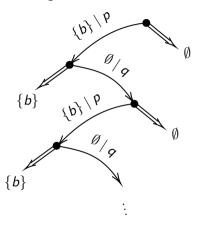
Is there an **e** such that $\llbracket \mathbf{e} \rrbracket = t$?

Question

Let t be a guarded tree with finitely many distinct subtrees.

Is there an **e** such that $\llbracket \mathbf{e} \rrbracket = t$?

Not in general — for instance:



See also (Kozen and Tseng 2008).

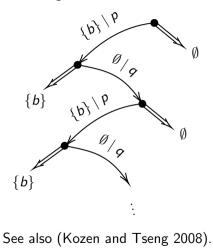
Question

Let t be a guarded tree with finitely many distinct subtrees.

Is there an **e** such that $\llbracket \mathbf{e} \rrbracket = t$?

Reason: our syntax does not have goto. Only *structured* programs!

Not in general — for instance:



Question

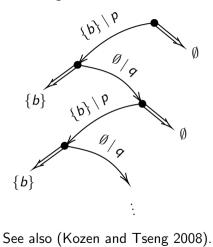
Let t be a guarded tree with finitely many distinct subtrees.

Is there an **e** such that [e] = t?

Reason: our syntax does not have goto. Only *structured* programs!

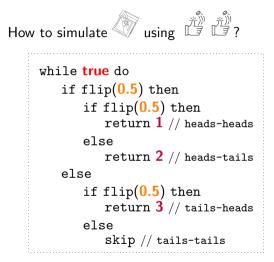
 $\ell_0:$ if **b** then p; goto ℓ_1 else accept $\ell_1:$ if $\overline{\mathbf{b}}$ then q; goto ℓ_0 else accept

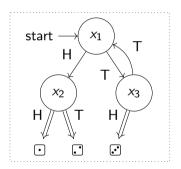
Not in general — for instance:



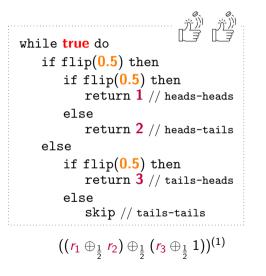
Knuth-Yao algorithm

Knuth-Yao algorithm





Correctness of Knuth-Yao in ProbGKAT



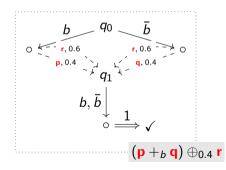
if flip(1/3) then return 1
else if flip(<mark>0.5</mark>) then
return 2
else
return 3
$r_1\oplus_{\frac{1}{3}}(r_2\oplus_{\frac{1}{2}}r_3)$

?

=

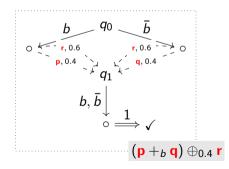
Operational model

Automata with the transition function of the type $Q imes \mathtt{At} o \mathcal{D}_\omega(\{\checkmark, X\} + V + \mathtt{Act} imes Q)$



Operational model

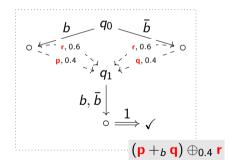
Automata with the transition function of the type $Q imes \mathtt{At} o \mathcal{D}_\omega(\{\checkmark, X\} + V + \mathtt{Act} imes Q)$



Notion of equivalence: bisimulation associated with the type functor

Operational model

Automata with the transition function of the type $Q imes \mathtt{At} o \mathcal{D}_\omega(\{\checkmark, X\} + V + \mathtt{Act} imes Q)$



- Notion of equivalence: bisimulation associated with the type functor
- Can be decided in O(n² log(n)) using a generic minimization algorithm (Wißmann et al, 2020)

Overview

- GKAT describes general equivalences of programs.
- It admits a complete axiomatization and is decidable.
- There is a model for the theory without $e0 \equiv 0$.
- Soundness and completeness can be recovered.
- Lack of GOTO means not every tree is expressible.
- A probabilistic extension is in the works.

https://kap.pe/slides https://kap.pe/papers

Nearly-linear complexity is $O(\alpha(n) \cdot n)$, where α is the *inverse Ackermann function*.

Fun fact: $\alpha(n) \leq 5$ for most numbers you can think of:

- Grains of sand in the Sahara.
- ► The number of DNA base pairs on earth.
- Number of protons in the observable universe.

See also (Tarjan 1975).

Syntax is special case of Kleene Algebra with Tests (KAT):

```
if a then e else f end \mapsto \mathbf{a} \cdot \mathbf{e} + \overline{\mathbf{a}} \cdot \mathbf{f}
```

while **a** do **e** end \mapsto $(\mathbf{a} \cdot \mathbf{e})^* \cdot \overline{\mathbf{a}}$

Syntax is special case of Kleene Algebra with Tests (KAT):

```
if a then e else f end \mapsto a \cdot e + \overline{a} \cdot f
```

while **a** do **e** end \mapsto $(\mathbf{a} \cdot \mathbf{e})^* \cdot \overline{\mathbf{a}}$

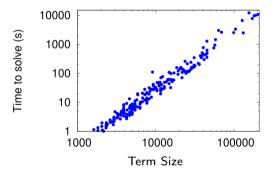
Known results:

- ▶ There is a "nice" set of axioms for KAT.
- Soundness & completeness for a straightforward model.
- Equivalence according to these axioms is decidable.

Equivalence in KAT is PSPACE-complete (Cohen, Kozen, and Smith 1996).

Equivalence in KAT is PSPACE-complete (Cohen, Kozen, and Smith 1996).

But for practical inputs, good algorithms scale well — e.g., (Foster et al. 2015):



References

- Ernie Cohen, Dexter Kozen, and Frederick Smith (July 1996). The Complexity of Kleene Algebra with *Tests*. Tech. rep. TR96-1598. Cornell University. handle: 1813/7253.
- Nate Foster et al. (2015). "A Coalgebraic Decision Procedure for NetKAT". In: POPL, pp. 343–355. DOI: 10.1145/2676726.2677011.
- Dexter Kozen and Wei-Lung (Dustin) Tseng (2008). "The Böhm-Jacopini Theorem is False, Propositionally". In: MPC, pp. 177–192. DOI: 10.1007/978-3-540-70594-9_11.
- Konstantinos Mamouras (2017). "Equational Theories of Abnormal Termination Based on Kleene Algebra". In: *FOSSACS*. Vol. 10203. Lecture Notes in Computer Science, pp. 88–105. DOI: 10.1007/978-3-662-54458-7_6.
- - Todd Schmid et al. (2021). "Guarded Kleene Algebra with Tests: Coequations, Coinduction, and Completeness". In: *ICALP*, 142:1–142:14. DOI: 10.4230/LIPIcs.ICALP.2021.142.
- **Steffen Smolka et al. (Jan. 2020).** "Guarded Kleene Algebra with Tests: Verification of Uninterpreted Programs in Nearly Linear Time". In: *POPL.* DOI: 10.1145/3371129.
- Robert Endre Tarjan (1975). "Efficiency of a Good But Not Linear Set Union Algorithm". In: 22.2, pp. 215–225. DOI: 10.1145/321879.321884.

