Decision problems for Clark-congruential languages

Makoto Kanazawa ${ }^{1}$ Tobias Kappé ${ }^{2}$

${ }^{1}$ Hosei University, Tokyo
${ }^{2}$ University College London

Work performed at the National Institute of Informatics, Tokyo.
LearnAut, July 13, 2018

Introduction

Suppose you know the following Japanese phrase：
猫は椅子で眠る The cat sleeps in the chair．

Introduction

Suppose you know the following Japanese phrase：
猫は椅子で眠る The cat sleeps in the chair．
You also know that dog is 犬．Now，you can form：
犬は椅子で眠る

Introduction

Suppose you know the following Japanese phrase：
猫は椅子で眠る The cat sleeps in the chair．
You also know that dog is 犬．Now，you can form：
犬は椅子で眠る The dog sleeps in the chair．

Introduction

This works because 猫 and 犬 are nouns.

Introduction

This works because 猫 and 犬 are nouns.
Replacing nouns (probably) preserves grammatical correctness.

Introduction

This works because 猫 and 犬 are nouns．
Replacing nouns（probably）preserves grammatical correctness．
猫 and 犬 are（almost）syntactically congruent：

$$
u \text { 猫 } v \in \text { Japanese " } \Longleftrightarrow " u 犬 v \in \text { Japanese }
$$

Introduction

Idea: use syntactic congruence to drive learning. ${ }^{1}$

[^0]
Introduction

Idea: use syntactic congruence to drive learning. ${ }^{1}$
When (for all we know) $u w v \in L \Longleftrightarrow u x v \in L$, presume $w \equiv_{L} x$.

[^1]
Introduction

Idea: use syntactic congruence to drive learning. ${ }^{1}$
When (for all we know) $u w v \in L \Longleftrightarrow u x v \in L$, presume $w \equiv L x$.
... but how to represent the language?

[^2]
Introduction

Definition (Informal)

A grammar is Clark-congruential (CC) if words derived from the same symbol are syntactically congruent for its language.

A language is CC when there exists a CC grammar that describes it.

Introduction

Definition (Informal)

A grammar is Clark-congruential (CC) if words derived from the same symbol are syntactically congruent for its language.
A language is CC when there exists a CC grammar that describes it.

Example

Consider these grammars for $L=\{a, b\}^{+}$:

$$
\begin{array}{ll}
G_{1}: & S \rightarrow S S+a+b \\
G_{2}: & S \rightarrow T S+a+b, \quad T \rightarrow a+b+\epsilon
\end{array}
$$

Introduction

Definition (Informal)

A grammar is Clark-congruential (CC) if words derived from the same symbol are syntactically congruent for its language.
A language is CC when there exists a CC grammar that describes it.

Example

Consider these grammars for $L=\{a, b\}^{+}$:

$$
\begin{aligned}
& G_{1}: \quad S \rightarrow S S+a+b \\
& G_{2}: \quad S \rightarrow T S+a+b, \quad T \rightarrow a+b+\epsilon
\end{aligned}
$$

If S derives w and x in G_{1}, then $u w v \in L$ implies $u x v \in L-G_{1}$ is $C C$.

Introduction

Definition (Informal)

A grammar is Clark-congruential (CC) if words derived from the same symbol are syntactically congruent for its language.
A language is CC when there exists a CC grammar that describes it.

Example

Consider these grammars for $L=\{a, b\}^{+}$:

$$
\begin{array}{ll}
G_{1}: & S \rightarrow S S+a+b \\
G_{2}: & S \rightarrow T S+a+b, \quad T \rightarrow a+b+\epsilon
\end{array}
$$

If S derives w and x in G_{1}, then $u w v \in L$ implies $u x v \in L-G_{1}$ is $C C$.
However: T derives a and ϵ in G_{2}. Now, $a \in L$ but $\epsilon \notin L-G_{2}$ is not CC.

Introduction

Let G be a CC grammar describing L.

Introduction

Let G be a CC grammar describing L.
In the minimally adequate teacher (MAT) model, the learner can query:

- Given $w \in \Sigma^{*}$, does $w \in L(G)$ hold?
- Given a grammar H, does $L(G)=L(H)$ hold? If not, give a counterexample.

Introduction

Let G be a CC grammar describing L.
In the minimally adequate teacher (MAT) model, the learner can query:

- Given $w \in \Sigma^{*}$, does $w \in L(G)$ hold?
- Given a grammar H, does $L(G)=L(H)$ hold? If not, give a counterexample.

Theorem (Clark 2010)
Let L be a CC language; L is "MAT-learnable".
That is, given a MAT for L, we can construct a CC grammar for L.

Introduction

Let G be a CC grammar describing L.
In the minimally adequate teacher (MAT) model, the learner can query:

- Given $w \in \Sigma^{*}$, does $w \in L(G)$ hold?
- Given a grammar H, does $L(G)=L(H)$ hold? If not, give a counterexample.

Theorem (Clark 2010)

Let L be a CC language; L is "MAT-learnable".
That is, given a MAT for L, we can construct a CC grammar for L.

Question

Let L be a CC language; is L "MAT-teachable"?
That is, given a CC grammar for L, can we construct a MAT for L ?

Introduction

Let G be a CC grammar describing L.
In the minimally adequate teacher (MAT) model, the learner can query:

- Given $w \in \Sigma^{*}$, does $w \in L(G)$ hold?
- Given a grammar H, does $L(G)=L(H)$ hold? If not, give a counterexample.

Theorem (Clark 2010) Is this decidable?

Let L be a CC language; L is "MAT-learnable". That is, given a MAT for L, we can construct a CC grammar for L.

Question

Let L be a CC language; is L "MAT-teachable"?
That is, given a CC grammar for L, can we construct a MAT for L ?

Context

Equivalence problem
Given grammars G_{1} and G_{2}, does $L\left(G_{1}\right)=L\left(G_{2}\right)$ hold?

[^3]
Context

Equivalence problem
Given grammars G_{1} and G_{2}, does $L\left(G_{1}\right)=L\left(G_{2}\right)$ hold?

Congruence problem

Given a grammar G, and $w, x \in \Sigma^{*}$, are w and x syntactically congruent for $L(G)$?

[^4]
Context

Equivalence problem

Given grammars G_{1} and G_{2}, does $L\left(G_{1}\right)=L\left(G_{2}\right)$ hold?

Congruence problem

Given a grammar G, and $w, x \in \Sigma^{*}$, are w and x syntactically congruent for $L(G)$?
Equivalence and congruence are undecidable for grammars in general. ${ }^{2}$

[^5]
Context

Context

Context-free languages

CC languages

Context

Context-free languages
CC languages

Pre-NTS languages

Context

Context-free languages
CC languages

Pre-NTS languages

NTS languages

Context

	Congruence	Equivalence
NTS	\mathfrak{J}^{3}	\mathfrak{J}^{3}
Pre-NTS	\mathfrak{J}^{4}	\mathfrak{J}^{4}

[^6]
Context

	Congruence	Equivalence
NTS	\mathfrak{J}^{3}	\mathfrak{J}^{3}
Pre-NTS	\mathfrak{J}^{4}	\mathfrak{J}^{4}
CC	\checkmark	\checkmark

[^7]
Preliminaries

A congruence on Σ^{*} is an equivalence \equiv on Σ^{*} such that

$$
\frac{w \equiv w^{\prime} \quad x \equiv x^{\prime}}{w x \equiv w^{\prime} x^{\prime}}
$$

Preliminaries

A congruence on Σ^{*} is an equivalence \equiv on Σ^{*} such that

$$
\frac{w \equiv w^{\prime} \quad x \equiv x^{\prime}}{w x \equiv w^{\prime} x^{\prime}}
$$

Every language L induces a syntactic congruence \equiv_{L} :

$$
\frac{\forall u, v \in \Sigma^{*} . u w v \in L \Longleftrightarrow u x v \in L}{w \equiv_{L} x}
$$

Preliminaries

A Context-Free Grammar (CFG) is a tuple $G=\langle V, \rightarrow, I\rangle$.
Nonterminals

Preliminaries

A Context-Free Grammar (CFG) is a tuple $G=\langle V, \rightarrow, I\rangle$.
Production relation

Preliminaries

A Context-Free Grammar (CFG) is a tuple $G=\langle V, \rightarrow, I\rangle$.
Initial nonterminals

Preliminaries

A Context-Free Grammar (CFG) is a tuple $G=\langle V, \rightarrow, I\rangle$.
We fix $G=\langle V, \rightarrow, I\rangle$.

Preliminaries

A Context-Free Grammar (CFG) is a tuple $G=\langle V, \rightarrow, I\rangle$.
We fix $G=\langle V, \rightarrow, I\rangle$.

$$
\frac{\alpha B \gamma \in(\Sigma \cup V)^{*} \quad B \rightarrow \beta}{\alpha B \gamma \Rightarrow_{G} \alpha \beta \gamma}
$$

Preliminaries

A Context-Free Grammar (CFG) is a tuple $G=\langle V, \rightarrow, I\rangle$.
We fix $G=\langle V, \rightarrow, I\rangle$.

$$
\frac{\alpha B \gamma \in(\Sigma \cup V)^{*} \quad B \rightarrow \beta}{\alpha B \gamma \Rightarrow_{G} \alpha \beta \gamma}
$$

$$
L(G, \alpha)=\left\{w \in \Sigma^{*}: \alpha \Rightarrow_{G}^{*} w\right\}
$$

Preliminaries

A Context-Free Grammar (CFG) is a tuple $G=\langle V, \rightarrow, \mathrm{I}\rangle$.
We fix $G=\langle V, \rightarrow, I\rangle$.

$$
\frac{\alpha B \gamma \in(\Sigma \cup V)^{*} \quad B \rightarrow \beta}{\alpha B \gamma \Rightarrow_{G} \alpha \beta \gamma}
$$

$$
L(G, \alpha)=\left\{w \in \Sigma^{*}: \alpha \Rightarrow_{G}^{*} w\right\} \quad L(G)=\bigcup_{A \in I} L(G, A)
$$

Preliminaries

A Context-Free Grammar (CFG) is a tuple $G=\langle V, \rightarrow, \mathrm{I}\rangle$.
We fix $G=\langle V, \rightarrow, I\rangle$.

$$
\frac{\alpha B \gamma \in(\Sigma \cup V)^{*} \quad B \rightarrow \beta}{\alpha B \gamma \Rightarrow_{G} \alpha \beta \gamma}
$$

$$
L(G, \alpha)=\left\{w \in \Sigma^{*}: \alpha \Rightarrow_{G}^{*} w\right\} \quad L(G)=\bigcup_{A \in I} L(G, A)
$$

Definition (More formal)

We say G is $C C$ when for $A \in V$ and $w, x \in L(G, A)$, we have $w \equiv_{L(G)} x$.

Preliminaries

We assume a total order \preceq on Σ.

Preliminaries

We assume a total order \preceq on Σ.
This order extends to a total order on Σ^{*} :

- If w is shorter than x, then $w \preceq x$.
- If w and x are of equal length, compare lexicographically.

Preliminaries

We assume a total order \preceq on Σ.
This order extends to a total order on Σ^{*} :

- If w is shorter than x, then $w \preceq x$.
- If w and x are of equal length, compare lexicographically.

For $\alpha \in(\Sigma \cup V)^{*}$ with $L(G, \alpha) \neq \emptyset$, write $\vartheta_{G}(\alpha)$ for the \preceq-minimum of $L(G, \alpha)$.

Deciding congruence

Let G be CC.
We mimic an earlier method to decide congruence. ${ }^{5}$

[^8]
Deciding congruence

Let G be CC.
We mimic an earlier method to decide congruence. ${ }^{5}$
Let \rightsquigarrow_{G} be the smallest rewriting relation such that

$$
\frac{A \rightarrow \alpha \quad L(G, \alpha) \neq \emptyset}{\vartheta_{G}(\alpha) \rightsquigarrow{ }_{G} \vartheta_{G}(A)}
$$

[^9]
Deciding congruence

Let G be CC.
We mimic an earlier method to decide congruence. ${ }^{5}$
Let \rightsquigarrow_{G} be the smallest rewriting relation such that

$$
\frac{A \rightarrow \alpha \quad L(G, \alpha) \neq \emptyset}{\vartheta_{G}(\alpha) \rightsquigarrow G_{G} \vartheta_{G}(A)}
$$

Lemma
If $w \rightsquigarrow G_{G} x$, then $w \equiv_{L(G)} x$.

[^10]
Deciding congruence

Lemma
$w \in L(G)$ if and only if $w \rightsquigarrow G \vartheta_{G}(A)$ for some $A \in I$.

Deciding congruence

Lemma

$w \in L(G)$ if and only if $w \rightsquigarrow G \vartheta_{G}(A)$ for some $A \in I$.

Example

Let $G=\langle\{S\},\{S \rightarrow S S+(S)+\epsilon\},\{S\}\rangle$; this grammar is CC.

Deciding congruence

Lemma

$w \in L(G)$ if and only if $w \rightsquigarrow G \vartheta_{G}(A)$ for some $A \in I$.

Example

Let $G=\langle\{S\},\{S \rightarrow S S+(S)+\epsilon\},\{S\}\rangle$; this grammar is CC.
$\rightsquigarrow G$ is generated by () $\rightsquigarrow G \epsilon$

$$
(() \underline{()})()
$$

Deciding congruence

Lemma

$w \in L(G)$ if and only if $w \rightsquigarrow G \vartheta_{G}(A)$ for some $A \in I$.

Example

Let $G=\langle\{S\},\{S \rightarrow S S+(S)+\epsilon\},\{S\}\rangle$; this grammar is CC.
$\rightsquigarrow G$ is generated by ()$\rightsquigarrow G \epsilon$

$$
(() \underline{()})() m_{G}(\underline{()})()
$$

Deciding congruence

Lemma

$w \in L(G)$ if and only if $w \rightsquigarrow_{G} \vartheta_{G}(A)$ for some $A \in I$.

Example

Let $G=\langle\{S\},\{S \rightarrow S S+(S)+\epsilon\},\{S\}\rangle$; this grammar is CC.
\rightsquigarrow_{G} is generated by () $\rightsquigarrow_{G} \epsilon$

$$
(() \underline{()})() \rightsquigarrow G(\underline{(1)})() \rightsquigarrow G() \underline{()}
$$

Deciding congruence

Lemma

$w \in L(G)$ if and only if $w \rightsquigarrow_{G} \vartheta_{G}(A)$ for some $A \in I$.

Example

Let $G=\langle\{S\},\{S \rightarrow S S+(S)+\epsilon\},\{S\}\rangle$; this grammar is CC.
\rightsquigarrow_{G} is generated by () $\rightsquigarrow_{G} \epsilon$

$$
(() \underline{()})() \rightsquigarrow G(\underline{()})() \rightsquigarrow G() \underline{()} \rightsquigarrow G \underline{()}
$$

Deciding congruence

Lemma

$w \in L(G)$ if and only if $w \rightsquigarrow_{G} \vartheta_{G}(A)$ for some $A \in I$.

Example

Let $G=\langle\{S\},\{S \rightarrow S S+(S)+\epsilon\},\{S\}\rangle$; this grammar is CC.
\rightsquigarrow_{G} is generated by () $\rightsquigarrow_{G} \epsilon$

$$
(() \underline{()})() \rightsquigarrow_{G}(\underline{(O})() \rightsquigarrow_{G}() \underline{()} \rightsquigarrow_{G}^{(\underline{(}) \rightsquigarrow_{G} \epsilon=\vartheta_{G}(S)}
$$

Deciding congruence

Lemma

$w \in L(G)$ if and only if $w \rightsquigarrow_{G} \vartheta_{G}(A)$ for some $A \in I$.

Example

Let $G=\langle\{S\},\{S \rightarrow S S+(S)+\epsilon\},\{S\}\rangle$; this grammar is CC.
$\rightsquigarrow G$ is generated by ()$\rightsquigarrow G \epsilon$

$$
(() \underline{()})() \rightsquigarrow_{G}(\underline{(O})() \rightsquigarrow_{G}() \underline{()} \rightsquigarrow_{G}^{(\underline{(}) \rightsquigarrow_{G} \epsilon=\vartheta_{G}(S)}
$$

therefore: $(()())() \in L(G)$.

Deciding congruence

Lemma
$w \in L(G)$ if and only if $w \rightsquigarrow_{G} \vartheta_{G}(A)$ for some $A \in I$.

Example

Let $G=\langle\{S\},\{S \rightarrow S S+(S)+\epsilon\},\{S\}\rangle$; this grammar is CC.
\rightsquigarrow_{G} is generated by () $\rightsquigarrow_{G} \epsilon$

$$
\left.(() \underline{()})() \rightsquigarrow_{G}(\underline{(O})() \rightsquigarrow_{G}() \underline{(}\right) \rightsquigarrow_{G} \underline{()} \rightsquigarrow_{G} \epsilon=\vartheta_{G}(S)
$$

therefore: $(()())() \in L(G)$.
From) () (, we cannot reach ϵ; thus,) () ($\notin L(G)$.

Deciding congruence

Write \mathcal{I}_{G} for the set of words irreducible by $\rightsquigarrow G$.

Deciding congruence

Write \mathcal{I}_{G} for the set of words irreducible by $\rightsquigarrow G$.
Lemma
We can create a DPDA M_{w} such that $L\left(M_{w}\right)=\left\{u \sharp v: u w v \in L(G), u, v \in \mathcal{I}_{G}\right\}$.

Deciding congruence

Write \mathcal{I}_{G} for the set of words irreducible by $\rightsquigarrow G$.
Lemma
We can create a DPDA M_{w} such that $L\left(M_{w}\right)=\left\{u \sharp v: u w v \in L(G), u, v \in \mathcal{I}_{G}\right\}$.
Lemma
$L\left(M_{w}\right)=L\left(M_{x}\right)$ if and only if $w \equiv L(G) x$.

Deciding congruence

Write \mathcal{I}_{G} for the set of words irreducible by $\rightsquigarrow G$.
Lemma
We can create a DPDA M_{w} such that $L\left(M_{w}\right)=\left\{u \sharp v: u w v \in L(G), u, v \in \mathcal{I}_{G}\right\}$.
Lemma
$L\left(M_{w}\right)=L\left(M_{x}\right)$ if and only if $w \equiv_{L(G)} x$.
Decidable (Sénizergues 1997)

Deciding congruence

Write \mathcal{I}_{G} for the set of words irreducible by $\rightsquigarrow G$.
Lemma
We can create a DPDA M_{w} such that $L\left(M_{w}\right)=\left\{u \sharp v: u w v \in L(G), u, v \in \mathcal{I}_{G}\right\}$.
Lemma
$L\left(M_{w}\right)=L\left(M_{x}\right)$ if and only if $w \equiv L(G) x$.
Theorem
Let $w, x \in \Sigma^{*}$. We can decide whether $w \equiv_{L(G)} x$.

Deciding equivalence

Analogous to a result about NTS grammars, ${ }^{6}$ we find
Lemma
Let $G_{1}=\left\langle V_{1}, \rightarrow_{1}, I_{1}\right\rangle$ and $G_{2}=\left\langle V_{2}, \rightarrow_{2}, I_{2}\right\rangle$ be CC.
Then $L\left(G_{1}\right)=L\left(G_{2}\right)$ if and only if
(i) for all $A \in I_{1}$, it holds that $\vartheta_{G_{1}}(A) \in L\left(G_{2}\right)$ (and vice versa)
(ii) for all pairs $u \rightsquigarrow G_{1} v$ generating $\rightsquigarrow G_{1}$, also $u \equiv L\left(G_{2}\right) v$ (and vice versa)

[^11]
Deciding equivalence

Analogous to a result about NTS grammars, ${ }^{6}$ we find
Lemma
Let $G_{1}=\left\langle V_{1}, \rightarrow_{1}, I_{1}\right\rangle$ and $G_{2}=\left\langle V_{2}, \rightarrow_{2}, I_{2}\right\rangle$ be CC.
Then $L\left(G_{1}\right)=L\left(G_{2}\right)$ if and only if
(i) for all $A \in I_{1}$, it holds that $\vartheta_{G_{1}}(A) \in L\left(G_{2}\right)$ (and vice versa)

[^12]
Deciding equivalence

Analogous to a result about NTS grammars, ${ }^{6}$ we find
Lemma
Let $G_{1}=\left\langle V_{1}, \rightarrow_{1}, I_{1}\right\rangle$ and $G_{2}=\left\langle V_{2}, \rightarrow_{2}, I_{2}\right\rangle$ be CC.
Then $L\left(G_{1}\right)=L\left(G_{2}\right)$ if and only if
(i) for all $A \in I_{1}$, it holds that $\vartheta_{G_{1}}(A) \in L\left(G_{2}\right)$ (and vice versa)
(ii) for all pairs $u \rightsquigarrow G_{1} v$ generating \leadsto _ alen ${ }^{\prime \prime} \equiv \equiv_{L\left(G_{2}\right)} v$ (and vice versa)

[^13]
Deciding equivalence

Analogous to a result about NTS grammars, ${ }^{6}$ we find
Lemma
Let $G_{1}=\left\langle V_{1}, \rightarrow_{1}, I_{1}\right\rangle$ and $G_{2}=\left\langle V_{2}, \rightarrow_{2}, I_{2}\right\rangle$ be CC.
Then $L\left(G_{1}\right)=L\left(G_{2}\right)$ if and only if
(i) for all $A \in I_{1}$, it holds that $\vartheta_{G_{1}}(A) \in L\left(G_{2}\right)$ (and vice versa)
(ii) for all pairs $u \rightsquigarrow G_{1} v$ generating $\rightsquigarrow_{G_{1}}$, also $u \equiv_{L\left(G_{2}\right)} v$ (and vice versa)

Finitely many

Deciding equivalence

Analogous to a result about NTS grammars, ${ }^{6}$ we find
Lemma
Let $G_{1}=\left\langle V_{1}, \rightarrow_{1}, I_{1}\right\rangle$ and $G_{2}=\left\langle V_{2}, \rightarrow_{2}, I_{2}\right\rangle$ be CC.
Then $L\left(G_{1}\right)=L\left(G_{2}\right)$ if and only if
(i) for all $A \in I_{1}$, it holds that $\vartheta_{G_{1}}(A) \in L\left(G_{2}\right)$ (and vice versa)
(ii) for all pairs $u \rightsquigarrow G_{1} v$ generating $\rightsquigarrow G_{1}$, also $u \equiv L\left(G_{2}\right) \vee$ (and vice versa)

Decidable

[^14]
Deciding equivalence

Analogous to a result about NTS grammars, ${ }^{6}$ we find
Lemma
Let $G_{1}=\left\langle V_{1}, \rightarrow_{1}, I_{1}\right\rangle$ and $G_{2}=\left\langle V_{2}, \rightarrow_{2}, I_{2}\right\rangle$ be CC.
Then $L\left(G_{1}\right)=L\left(G_{2}\right)$ if and only if
(i) for all $A \in I_{1}$, it holds that $\vartheta_{G_{1}}(A) \in L\left(G_{2}\right)$ (and vice versa)
(ii) for all pairs $u \rightsquigarrow G_{1} v$ generating $\rightsquigarrow G_{1}$, also $u \equiv L\left(G_{2}\right) v$ (and vice versa)

Theorem
Let G_{1} and G_{2} be CC. We can decide whether $L\left(G_{1}\right)=L\left(G_{2}\right)$.

[^15]
Conclusion

So, are CC languages "MAT-teachable" ?

Conclusion

So, are CC languages "MAT-teachable"?
Yes. . . but there is a slight mismatch:

Conclusion

So, are CC languages "MAT-teachable"?
Yes... but there is a slight mismatch:

- (Clark 2010) assumes an extended MAT.

Conclusion

So, are CC languages "MAT-teachable"?
Yes. . . but there is a slight mismatch:

- (Clark 2010) assumes an extended MAT.
- That is, hypothesis grammars may not be CC!

Conclusion

So, are CC languages "MAT-teachable"?
Yes. . . but there is a slight mismatch:

- (Clark 2010) assumes an extended MAT.
- That is, hypothesis grammars may not be CC!

Two plausible fixes:

Conclusion

So, are CC languages "MAT-teachable"?
Yes. . . but there is a slight mismatch:

- (Clark 2010) assumes an extended MAT.
- That is, hypothesis grammars may not be CC!

Two plausible fixes:

- Adjust learning algorithm to have CC grammars as hypotheses.

Conclusion

So, are CC languages "MAT-teachable"?
Yes. . . but there is a slight mismatch:

- (Clark 2010) assumes an extended MAT.
- That is, hypothesis grammars may not be CC!

Two plausible fixes:

- Adjust learning algorithm to have CC grammars as hypotheses.
- Extend decision procedure, requiring only one grammar to be CC.

Further work

Many open questions:

- Are CC grammars more expressive than pre-NTS grammars?

Further work

Many open questions:

- Are CC grammars more expressive than pre-NTS grammars?
- Is the language of every CC grammar a DCFL?

Further work

Many open questions:

- Are CC grammars more expressive than pre-NTS grammars?
- Is the language of every CC grammar a DCFL?
- Is it decidable whether a given grammar is CC?

Bonus: grammar to DPDA

Lemma
Let G be CC, and let R be regular.
We can create a CC grammar G_{R} such that $L\left(G_{R}\right)=L(G) \cap R$.

Bonus: grammar to DPDA

Lemma
Let G be CC, and let R be regular.
We can create a CC grammar G_{R} such that $L\left(G_{R}\right)=L(G) \cap R$.

Lemma
Let $h: \Sigma^{*} \rightarrow \Sigma^{*}$ be a strictly alphabetic morphism, that is, $h(a) \in \Sigma$ for all $a \in \Sigma$.
We can create a CC grammar G^{h} such that $L\left(G^{h}\right)=h^{-1}(L(G))$.

Bonus: grammar to DPDA

For $a \in \Sigma$, add \bar{a} to Σ.
Let $h: \Sigma \rightarrow \Sigma$ be such that $h(a)=h(\bar{a})=a$.
Create G^{h} such that $L\left(G^{h}\right)=h^{-1}(L(G))$.

Bonus: grammar to DPDA

For $a \in \Sigma$, add \bar{a} to Σ.
Let $h: \Sigma \rightarrow \Sigma$ be such that $h(a)=h(\bar{a})=a$.
Create G^{h} such that $L\left(G^{h}\right)=h^{-1}(L(G))$.

Intuition

G^{h} is the same as G, but positions in every word can be "marked" by ${ }^{-}$.

Bonus: grammar to DPDA

Note that \mathcal{I}_{G} is a regular language.
Create G_{w} such that $L\left(G_{w}\right)=L\left(G^{h}\right) \cap \mathcal{I}_{G} \bar{w} \mathcal{I}_{G}$.
Now $G_{w}=\left\{u \bar{w} v: u w v \in L(G), u, v \in \mathcal{I}_{G}\right\}$.

Bonus: grammar to DPDA

Note that \mathcal{I}_{G} is a regular language.
Create G_{w} such that $L\left(G_{w}\right)=L\left(G^{h}\right) \cap \mathcal{I}_{G} \bar{w} \mathcal{I}_{G}$.
Now $G_{w}=\left\{u \bar{w} v: u w v \in L(G), u, v \in \mathcal{I}_{G}\right\}$.

Intuition

$L\left(G_{w}\right)$ has words in $L(G)$ with w as a marked substring, with context reduced by \rightsquigarrow_{G}.

Bonus: grammar to DPDA

Lemma
Without loss of generality, every rule generating $\rightsquigarrow G_{w}$ overlaps and preserves \bar{w}.

Bonus: grammar to DPDA

Lemma

Without loss of generality, every rule generating $\rightsquigarrow G_{w}$ overlaps and preserves \bar{w}.
We can now create a reduction $\rightsquigarrow_{G[w]}$ and a finite set S_{w} such that

- Every rule generating $\rightsquigarrow G[w]$ contains and preserves \sharp.
- $\left\{x \in \Sigma^{*}: x \rightsquigarrow_{G[w]} y \in S_{w}\right\}=\left\{u \sharp v: u w v \in L(G), u, v \in \mathcal{I}_{G}\right\}$

Bonus: grammar to DPDA

Lemma

Without loss of generality, every rule generating $\rightsquigarrow G_{w}$ overlaps and preserves \bar{w}.
We can now create a reduction $\rightsquigarrow_{G[w]}$ and a finite set S_{w} such that

- Every rule generating $\rightsquigarrow G[w]$ contains and preserves \sharp.
- $\left\{x \in \Sigma^{*}: x \rightsquigarrow G[w] y \in S_{w}\right\}=\left\{u \sharp v: u w v \in L(G), u, v \in \mathcal{I}_{G}\right\}$

The DPDA M_{w} acts by reading $u \sharp v$ up to \sharp, putting the input on the stack. Then:

Bonus: grammar to DPDA

Lemma

Without loss of generality, every rule generating $\rightsquigarrow G_{w}$ overlaps and preserves \bar{w}.
We can now create a reduction $\rightsquigarrow_{G[w]}$ and a finite set S_{w} such that

- Every rule generating $\rightsquigarrow G_{[w]}$ contains and preserves \sharp.
- $\left\{x \in \Sigma^{*}: x \rightsquigarrow G[w] y \in S_{w}\right\}=\left\{u \sharp v: u w v \in L(G), u, v \in \mathcal{I}_{G}\right\}$

The DPDA M_{w} acts by reading $u \sharp v$ up to \sharp, putting the input on the stack. Then: - Pop from the stack or read from input into two buffers (encoded in state).

Bonus: grammar to DPDA

Lemma

Without loss of generality, every rule generating $\rightsquigarrow G_{w}$ overlaps and preserves \bar{w}.
We can now create a reduction $\rightsquigarrow_{G[w]}$ and a finite set S_{w} such that

- Every rule generating $\rightsquigarrow G[w]$ contains and preserves \sharp.
- $\left\{x \in \Sigma^{*}: x \rightsquigarrow G[w] y \in S_{w}\right\}=\left\{u \sharp v: u w v \in L(G), u, v \in \mathcal{I}_{G}\right\}$

The DPDA M_{w} acts by reading $u \sharp v$ up to \sharp, putting the input on the stack. Then:

- Pop from the stack or read from input into two buffers (encoded in state).
- Whenever possible, reduce according to the rules from $\rightsquigarrow G[w]$.

Bonus: grammar to DPDA

Lemma

Without loss of generality, every rule generating $\rightsquigarrow G_{w}$ overlaps and preserves \bar{w}.
We can now create a reduction $\rightsquigarrow_{G[w]}$ and a finite set S_{w} such that

- Every rule generating $\rightsquigarrow G[w]$ contains and preserves \sharp.
- $\left\{x \in \Sigma^{*}: x \rightsquigarrow G[w] y \in S_{w}\right\}=\left\{u \sharp v: u w v \in L(G), u, v \in \mathcal{I}_{G}\right\}$

The DPDA M_{w} acts by reading $u \sharp v$ up to \sharp, putting the input on the stack. Then:

- Pop from the stack or read from input into two buffers (encoded in state).
- Whenever possible, reduce according to the rules from $\rightsquigarrow G[w]$.
- When the buffer resembles S_{w} and the input and stack are empty, accept.

Bonus: grammar to DPDA

Lemma

Without loss of generality, every rule generating $\rightsquigarrow G_{w}$ overlaps and preserves \bar{w}.
We can now create a reduction $\rightsquigarrow{ }_{G[w]}$ and a finite set S_{w} such that

- Every rule generating $\rightsquigarrow G_{[w]}$ contains and preserves \sharp.
- $\left\{x \in \Sigma^{*}: x \rightsquigarrow G[w] y \in S_{w}\right\}=\left\{u \sharp v: u w v \in L(G), u, v \in \mathcal{I}_{G}\right\}$

The DPDA M_{w} acts by reading $u \sharp v$ up to \sharp, putting the input on the stack. Then:

- Pop from the stack or read from input into two buffers (encoded in state).
- Whenever possible, reduce according to the rules from $\rightsquigarrow G[w]$.
- When the buffer resembles S_{w} and the input and stack are empty, accept.

With some analysis, we find that $L\left(M_{w}\right)=\left\{u \sharp v: u w v \in L(G), u, v \in \mathcal{I}_{G}\right\}$.

Bonus: deciding Clark-congruentiality

Given a congruence \equiv, we can extend it a congruence $\hat{\equiv}$ on $(\Sigma \cup V)^{*}$, by stipulating

$$
\frac{\vartheta_{G}(\alpha) \equiv \vartheta_{G}(\beta)}{\alpha \hat{\equiv \beta}}
$$

Bonus: deciding Clark-congruentiality

Given a congruence \equiv, we can extend it a congruence $\hat{\equiv}$ on $(\Sigma \cup V)^{*}$, by stipulating

$$
\frac{\vartheta_{G}(\alpha) \equiv \vartheta_{G}(\beta)}{\alpha \hat{\equiv \beta}}
$$

Lemma
Let \equiv be a congruence on Σ^{*}.
The following are equivalent:
(i) For all productions $A \rightarrow \alpha$, it holds that $A \hat{\equiv} \alpha$
(ii) For all $A \in V$ and $w, x \in L(G, A)$, it holds that $w \equiv x$.

Bonus: deciding Clark-congruentiality

Theorem
If $\equiv_{L(G)}$ is decidable, then we can decide whether G is CC.
Proof.
For $A \rightarrow \alpha$, check whether $A \hat{\hat{\bar{L}}_{L(G)}} \alpha$, i.e., whether $\vartheta_{G}(A) \equiv \equiv_{L(G)} \vartheta_{G}(\alpha)$.

Bonus: deciding Clark-congruentiality

Theorem
If $\equiv_{L(G)}$ is decidable, then we can decide whether G is CC.
Proof.
For $A \rightarrow \alpha$, check whether $A \hat{\hat{\bar{L}}_{L(G)}} \alpha$, i.e., whether $\vartheta_{G}(A) \equiv \equiv_{L(G)} \vartheta_{G}(\alpha)$.
Corollary
If $L(G)$ is a deterministic CFL, then it is decidable whether G is CC.

[^0]: ${ }^{1}$ Clark 2010.

[^1]: ${ }^{1}$ Clark 2010.

[^2]: ${ }^{1}$ Clark 2010.

[^3]: ${ }^{2}$ Bar-Hillel, Perles, and Shamir 1961.

[^4]: ${ }^{2}$ Bar-Hillel, Perles, and Shamir 1961.

[^5]: ${ }^{2}$ Bar-Hillel, Perles, and Shamir 1961.

[^6]: ${ }^{3}$ Sénizergues 1985.
 ${ }^{4}$ Autebert and Boasson 1992.

[^7]: ${ }^{3}$ Sénizergues 1985.
 ${ }^{4}$ Autebert and Boasson 1992.

[^8]: ${ }^{5}$ Autebert and Boasson 1992.

[^9]: ${ }^{5}$ Autebert and Boasson 1992.

[^10]: ${ }^{5}$ Autebert and Boasson 1992.

[^11]: ${ }^{6}$ Sénizergues 1985.

[^12]: ${ }^{6}$ Sénizergues 1985.

[^13]: ${ }^{6}$ Sénizergues 1985.

[^14]: ${ }^{6}$ Sénizergues 1985 .

[^15]: ${ }^{6}$ Sénizergues 1985.

