Decision problems for Clark-congruential languages

Makoto Kanazawa¹ Tobias Kappé²

¹Hosei University, Tokyo

²University College London

Work performed at the National Institute of Informatics, Tokyo.

LearnAut, July 13, 2018

Suppose you know the following Japanese phrase:

猫は椅子で眠る The <u>cat</u> sleeps in the chair.

Suppose you know the following Japanese phrase:

猫は椅子で眠る The <u>cat</u> sleeps in the chair.

You also know that dog is \bigstar . Now, you can form:

<u>犬</u>は椅子で眠る

Suppose you know the following Japanese phrase:

猫は椅子で眠る The <u>cat</u> sleeps in the chair.

You also know that dog is \bigstar . Now, you can form:

<u>大</u>は椅子で眠る The <u>dog</u> sleeps in the chair.

This works because 猫 and 犬 are nouns.

This works because 猫 and 犬 are nouns.

Replacing nouns (probably) preserves grammatical correctness.

This works because 猫 and 犬 are nouns.

Replacing nouns (probably) preserves grammatical correctness.

猫 and 犬 are (almost) syntactically congruent:

u猫 $v \in$ Japanese " \iff " u犬 $v \in$ Japanese

Idea: use syntactic congruence to drive learning.¹

Л

¹Clark 2010.

Idea: use syntactic congruence to drive learning.¹

When (for all we know) $uwv \in L \iff uxv \in L$, presume $w \equiv_L x$.

¹Clark 2010.

Idea: use syntactic congruence to drive learning.¹

When (for all we know) $uwv \in L \iff uxv \in L$, presume $w \equiv_L x$.

... but how to represent the language?

¹Clark 2010.

Definition (Informal)

A grammar is Clark-congruential (CC) if words derived from the same symbol are syntactically congruent for its language.

A language is CC when there exists a CC grammar that describes it.

Definition (Informal)

A grammar is *Clark-congruential* (*CC*) if words derived from the same symbol are syntactically congruent for its language.

A language is CC when there exists a CC grammar that describes it.

Example

Consider these grammars for $L = \{a, b\}^+$:

$$G_1: S \rightarrow SS + a + b$$

$$G_2: S \to TS + a + b, T \to a + b + \epsilon$$

Definition (Informal)

A grammar is *Clark-congruential* (*CC*) if words derived from the same symbol are syntactically congruent for its language.

A language is CC when there exists a CC grammar that describes it.

Example

Consider these grammars for $L = \{a, b\}^+$:

$$G_1: S \rightarrow SS + a + b$$

$$G_2: S \to TS + a + b, T \to a + b + \epsilon$$

If S derives w and x in G_1 , then $uwv \in L$ implies $uxv \in L - G_1$ is CC.

,

Definition (Informal)

A grammar is *Clark-congruential* (*CC*) if words derived from the same symbol are syntactically congruent for its language.

A language is CC when there exists a CC grammar that describes it.

Example

Consider these grammars for $L = \{a, b\}^+$:

 $G_1: S \rightarrow SS + a + b$

 $G_2: S \to TS + a + b, T \to a + b + \epsilon$

If S derives w and x in G_1 , then $uwv \in L$ implies $uxv \in L - G_1$ is CC.

However: T derives a and ϵ in G_2 . Now, $a \in L$ but $\epsilon \notin L - G_2$ is not CC.

Let G be a CC grammar describing L.

Let G be a CC grammar describing L.

In the minimally adequate teacher (MAT) model, the learner can query:

- ▶ Given $w \in \Sigma^*$, does $w \in L(G)$ hold?
- ▶ Given a grammar H, does L(G) = L(H) hold? If not, give a counterexample.

Let G be a CC grammar describing L.

In the minimally adequate teacher (MAT) model, the learner can query:

- ▶ Given $w \in \Sigma^*$, does $w \in L(G)$ hold?
- ▶ Given a grammar H, does L(G) = L(H) hold? If not, give a counterexample.

Theorem (Clark 2010)

Let L be a CC language; L is "MAT-learnable".

That is, given a MAT for L, we can construct a CC grammar for L.

Let G be a CC grammar describing L.

In the minimally adequate teacher (MAT) model, the learner can query:

- ▶ Given $w \in \Sigma^*$, does $w \in L(G)$ hold?
- ▶ Given a grammar H, does L(G) = L(H) hold? If not, give a counterexample.

Theorem (Clark 2010)

Let L be a CC language; L is "MAT-learnable".

That is, given a MAT for L, we can construct a CC grammar for L.

Question

Let L be a CC language; is L "MAT-teachable"?

That is, given a CC grammar for L, can we construct a MAT for L?

Let G be a CC grammar describing L.

In the minimally adequate teacher (MAT) model, the learner can query:

- ▶ Given $w \in \Sigma^*$, does $w \in L(G)$ hold?
- ▶ Given a grammar H, does L(G) = L(H) hold? If not, give a counterexample.

Theorem (Clark 2010)

Is this decidable?

Let L be a CC language; L is "MAT-learnable".

That is, given a MAT for L, we can construct a CC grammar for L.

Question

Let *L* be a CC language; is *L* "MAT-teachable"?

That is, given a CC grammar for L, can we construct a MAT for L?

Equivalence problem

Given grammars G_1 and G_2 , does $L(G_1) = L(G_2)$ hold?

²Bar-Hillel, Perles, and Shamir 1961.

Equivalence problem

Given grammars G_1 and G_2 , does $L(G_1) = L(G_2)$ hold?

Congruence problem

Given a grammar G, and $w, x \in \Sigma^*$, are w and x syntactically congruent for L(G)?

•

²Bar-Hillel, Perles, and Shamir 1961.

Equivalence problem

Given grammars G_1 and G_2 , does $L(G_1) = L(G_2)$ hold?

Congruence problem

Given a grammar G, and $w, x \in \Sigma^*$, are w and x syntactically congruent for L(G)?

Equivalence and congruence are undecidable for grammars in general.²

•

²Bar-Hillel, Perles, and Shamir 1961.

	Congruence	Equivalence
NTS	√ 3	√ 3
Pre-NTS	√ 4	√ 4

³Sénizergues 1985. ⁴Autebert and Boasson 1992.

	Congruence	Equivalence
NTS	√ 3	√ 3
Pre-NTS	√ 4	√ 4
СС	✓	✓

³Sénizergues 1985. ⁴Autebert and Boasson 1992.

A congruence on Σ^* is an equivalence \equiv on Σ^* such that

$$\frac{w \equiv w' \qquad x \equiv x'}{wx \equiv w'x'}$$

A *congruence* on Σ^* is an equivalence \equiv on Σ^* such that

$$\frac{w \equiv w' \qquad x \equiv x'}{wx \equiv w'x'}$$

Every language *L* induces a *syntactic congruence* \equiv_L :

$$\frac{\forall u, v \in \Sigma^*. \ uwv \in L \iff uxv \in L}{w \equiv_L x}$$

A Context-Free Grammar (CFG) is a tuple $G = \langle V, \rightarrow, I \rangle$.

Nonterminals

A Context-Free Grammar (CFG) is a tuple $G = \langle V, \rightarrow, I \rangle$.

Production relation

A Context-Free Grammar (CFG) is a tuple $G = \langle V, \rightarrow, I \rangle$.

Initial nonterminals

A Context-Free Grammar (CFG) is a tuple $G = \langle V, \rightarrow, I \rangle$.

We fix $G = \langle V, \rightarrow, I \rangle$.

A Context-Free Grammar (CFG) is a tuple $G = \langle V, \rightarrow, I \rangle$.

We fix
$$G = \langle V, \rightarrow, I \rangle$$
.

$$\frac{\alpha B \gamma \in (\Sigma \cup V)^* \quad B \to \beta}{\alpha B \gamma \Rightarrow_G \alpha \beta \gamma}$$

A Context-Free Grammar (CFG) is a tuple $G = \langle V, \rightarrow, I \rangle$.

We fix $G = \langle V, \rightarrow, I \rangle$.

$$\frac{\alpha B \gamma \in (\Sigma \cup V)^* \quad B \to \beta}{\alpha B \gamma \Rightarrow_G \alpha \beta \gamma}$$

$$L(G,\alpha) = \{w \in \Sigma^* : \alpha \Rightarrow_G^* w\}$$

A Context-Free Grammar (CFG) is a tuple $G = \langle V, \rightarrow, I \rangle$.

We fix $G = \langle V, \rightarrow, I \rangle$.

$$\frac{\alpha B \gamma \in (\Sigma \cup V)^* \quad B \to \beta}{\alpha B \gamma \Rightarrow_{G} \alpha \beta \gamma}$$

$$L(G,\alpha) = \{ w \in \Sigma^* : \alpha \Rightarrow_G^* w \}$$
 $L(G) = \bigcup_{A \in I} L(G,A)$

A Context-Free Grammar (CFG) is a tuple $G = \langle V, \rightarrow, I \rangle$.

We fix $G = \langle V, \rightarrow, I \rangle$.

$$\frac{\alpha B \gamma \in (\Sigma \cup V)^* \quad B \to \beta}{\alpha B \gamma \Rightarrow_{G} \alpha \beta \gamma}$$

$$L(G,\alpha) = \{ w \in \Sigma^* : \alpha \Rightarrow_G^* w \}$$
 $L(G) = \bigcup_{A \in I} L(G,A)$

Definition (More formal)

We say G is CC when for $A \in V$ and $w, x \in L(G, A)$, we have $w \equiv_{L(G)} x$.

We assume a total order \preceq on Σ .

We assume a total order \leq on Σ .

This order extends to a total order on Σ^* :

- ▶ If w is shorter than x, then $w \leq x$.
- ightharpoonup If w and x are of equal length, compare lexicographically.

We assume a total order \leq on Σ .

This order extends to a total order on Σ^* :

- ▶ If w is shorter than x, then $w \leq x$.
- ▶ If w and x are of equal length, compare lexicographically.

For $\alpha \in (\Sigma \cup V)^*$ with $L(G, \alpha) \neq \emptyset$, write $\vartheta_G(\alpha)$ for the \preceq -minimum of $L(G, \alpha)$.

Let G be CC.

We mimic an earlier method to decide congruence.⁵

⁵Autebert and Boasson 1992.

Let G be CC.

We mimic an earlier method to decide congruence.⁵

Let \leadsto_G be the smallest rewriting relation such that

$$\frac{A \to \alpha \qquad L(G, \alpha) \neq \emptyset}{\vartheta_G(\alpha) \leadsto_G \vartheta_G(A)}$$

⁵Autebert and Boasson 1992.

Let G be CC.

We mimic an earlier method to decide congruence.⁵

Let \leadsto_G be the smallest rewriting relation such that

$$\frac{A \to \alpha \qquad L(G, \alpha) \neq \emptyset}{\vartheta_G(\alpha) \leadsto_G \vartheta_G(A)}$$

Lemma

If $w \leadsto_G x$, then $w \equiv_{L(G)} x$.

⁵Autebert and Boasson 1992.

Lemma

 $w \in L(G)$ if and only if $w \leadsto_G \vartheta_G(A)$ for some $A \in I$.

Lemma

 $w \in L(G)$ if and only if $w \leadsto_G \vartheta_G(A)$ for some $A \in I$.

Example

Let $G = \langle \{S\}, \{S \to SS + (S) + \epsilon\}, \{S\} \rangle$; this grammar is CC.

Lemma

 $w \in L(G)$ if and only if $w \leadsto_G \vartheta_G(A)$ for some $A \in I$.

Example

Let
$$G=\langle \{S\}, \{S \to SS+(S)+\epsilon\}, \{S\} \rangle$$
; this grammar is CC. \leadsto_G is generated by () $\leadsto_G \epsilon$ (() $\underline{()}$) ()

Lemma

 $w \in L(G)$ if and only if $w \leadsto_G \vartheta_G(A)$ for some $A \in I$.

Example

Let $G = \langle \{S\}, \{S \to SS + (S) + \epsilon\}, \{S\} \rangle$; this grammar is CC.

 \leadsto_G is generated by () $\leadsto_G \epsilon$

$$(()\underline{()})() \leadsto_G (\underline{()})()$$

Lemma

 $w \in L(G)$ if and only if $w \leadsto_G \vartheta_G(A)$ for some $A \in I$.

Example

Let $G = \langle \{S\}, \{S \to SS + (S) + \epsilon\}, \{S\} \rangle$; this grammar is CC.

 \leadsto_G is generated by () $\leadsto_G \epsilon$

$$(()\underline{()})() \leadsto_G (\underline{()})() \leadsto_G ()\underline{()}$$

Lemma

 $w \in L(G)$ if and only if $w \leadsto_G \vartheta_G(A)$ for some $A \in I$.

Example

Let $G = \langle \{S\}, \{S \to SS + (S) + \epsilon\}, \{S\} \rangle$; this grammar is CC.

 \leadsto_G is generated by () $\leadsto_G \epsilon$

$$(()\underline{()})() \leadsto_G (\underline{()})() \leadsto_G ()\underline{()} \leadsto_G \underline{()}$$

Lemma

 $w \in L(G)$ if and only if $w \leadsto_G \vartheta_G(A)$ for some $A \in I$.

Example

Let $G = \langle \{S\}, \{S \to SS + (S) + \epsilon\}, \{S\} \rangle$; this grammar is CC.

 \leadsto_G is generated by () $\leadsto_G \epsilon$

$$(()\underline{()})() \leadsto_{G} (\underline{()})() \leadsto_{G} ()\underline{()} \leadsto_{G} \underline{()} \leadsto_{G} \epsilon = \vartheta_{G}(S)$$

Lemma

 $w \in L(G)$ if and only if $w \leadsto_G \vartheta_G(A)$ for some $A \in I$.

Example

Let $G = \langle \{S\}, \{S \to SS + (S) + \epsilon\}, \{S\} \rangle$; this grammar is CC.

 \leadsto_G is generated by () $\leadsto_G \epsilon$

$$(()\underline{()})() \leadsto_{G} (\underline{()})() \leadsto_{G} ()\underline{()} \leadsto_{G} \underline{()} \leadsto_{G} \epsilon = \vartheta_{G}(S)$$

therefore: $(()())() \in L(G)$.

Lemma

 $w \in L(G)$ if and only if $w \leadsto_G \vartheta_G(A)$ for some $A \in I$.

Example

Let $G = \langle \{S\}, \{S \to SS + (S) + \epsilon\}, \{S\} \rangle$; this grammar is CC.

 \leadsto_G is generated by () $\leadsto_G \epsilon$

$$(()\underline{()})() \leadsto_{G} (\underline{()})() \leadsto_{G} ()\underline{()} \leadsto_{G} \underline{()} \leadsto_{G} \epsilon = \vartheta_{G}(S)$$

therefore: (()())() $\in L(G)$.

From) () (, we cannot reach ϵ ; thus,) () ($\notin L(G)$.

Write \mathcal{I}_G for the set of words *irreducible* by \leadsto_G .

Write \mathcal{I}_G for the set of words *irreducible* by \leadsto_G .

Lemma

We can create a DPDA M_w such that $L(M_w) = \{u\sharp v : uwv \in L(G), \ u,v \in \mathcal{I}_G\}.$

Write \mathcal{I}_G for the set of words *irreducible* by \leadsto_G .

Lemma

We can create a DPDA M_w such that $L(M_w) = \{u \sharp v : uwv \in L(G), \ u, v \in \mathcal{I}_G\}.$

Lemma

 $L(M_w) = L(M_x)$ if and only if $w \equiv_{L(G)} x$.

Write \mathcal{I}_G for the set of words *irreducible* by \leadsto_G .

Lemma

We can create a DPDA M_w such that $L(M_w) = \{u \sharp v : uwv \in L(G), \ u, v \in \mathcal{I}_G\}.$

Lemma

 $L(M_w) = L(M_x)$ if and only if $w \equiv_{L(G)} x$.

Decidable (Sénizergues 1997)

Write \mathcal{I}_G for the set of words *irreducible* by \leadsto_G .

Lemma

We can create a DPDA M_w such that $L(M_w) = \{u \sharp v : uwv \in L(G), u, v \in \mathcal{I}_G\}.$

Lemma

 $L(M_w) = L(M_x)$ if and only if $w \equiv_{L(G)} x$.

Theorem

Let $w, x \in \Sigma^*$. We can decide whether $w \equiv_{L(G)} x$.

Analogous to a result about NTS grammars, 6 we find

Lemma

Let $G_1 = \langle V_1, \rightarrow_1, I_1 \rangle$ and $G_2 = \langle V_2, \rightarrow_2, I_2 \rangle$ be CC.

Then $L(G_1) = L(G_2)$ if and only if

- (i) for all $A \in I_1$, it holds that $\vartheta_{G_1}(A) \in L(G_2)$ (and vice versa)
- (ii) for all pairs $u \leadsto_{G_1} v$ generating \leadsto_{G_1} , also $u \equiv_{L(G_2)} v$ (and vice versa)

⁶Sénizergues 1985.

Analogous to a result about NTS grammars, 6 we find

Lemma

Let $G_1 = \langle V_1, \rightarrow_1, I_1 \rangle$ and $G_2 = \langle V_2, \rightarrow_2, I_2 \rangle$ be CC.

Then $L(G_1) = L(G_2)$ if and only if

- (i) for all $A \in I_1$, it holds that $\vartheta_{G_1}(A) \in L(G_2)$ (and vice versa)
- (ii) for all pirs upon G_1 v generating \leadsto_{G_1} , also $u \equiv_{L(G_2)} v$ (and vice versa) Finitely many

⁶Sénizergues 1985.

Analogous to a result about NTS grammars, 6 we find

Lemma

Let
$$G_1 = \langle V_1, \rightarrow_1, I_1 \rangle$$
 and $G_2 = \langle V_2, \rightarrow_2, I_2 \rangle$ be CC.

Then $L(G_1) = L(G_2)$ if and only if

- (i) for all $A \in I_1$, it holds that $\vartheta_{G_1}(A) \in L(G_2)$ (and vice versa)
- (ii) for all pairs $u \rightsquigarrow_{G_1} v$ generating $u \bowtie_{G_2} v \equiv_{L(G_2)} v$ (and vice versa)

⁶Sénizergues 1985.

Analogous to a result about NTS grammars, 6 we find

Lemma

Let
$$G_1 = \langle V_1, \rightarrow_1, I_1 \rangle$$
 and $G_2 = \langle V_2, \rightarrow_2, I_2 \rangle$ be CC.

Then $L(G_1) = L(G_2)$ if and only if

- (i) for all $A \in I_1$, it holds that $\vartheta_{G_1}(A) \in L(G_2)$ (and vice versa)
- (ii) for all pairs $u \leadsto_{G_1} v$ generating \leadsto_{G_1} , also $u \equiv_{L(G_2)} v$ (and vice versa)

Finitely many

Analogous to a result about NTS grammars, 6 we find

Lemma

Let
$$G_1 = \langle V_1, \rightarrow_1, I_1 \rangle$$
 and $G_2 = \langle V_2, \rightarrow_2, I_2 \rangle$ be CC.

Then $L(G_1) = L(G_2)$ if and only if

- (i) for all $A \in I_1$, it holds that $\vartheta_{G_1}(A) \in L(G_2)$ (and vice versa)
- (ii) for all pairs $u \leadsto_{G_1} v$ generating \leadsto_{G_1} , also $u \equiv_{L(G_2)} v$ (and vice versa)

Decidable

⁶Sénizergues 1985.

Analogous to a result about NTS grammars, 6 we find

Lemma

Let
$$G_1 = \langle V_1, \rightarrow_1, I_1 \rangle$$
 and $G_2 = \langle V_2, \rightarrow_2, I_2 \rangle$ be CC.

Then $L(G_1) = L(G_2)$ if and only if

- (i) for all $A \in I_1$, it holds that $\vartheta_{G_1}(A) \in L(G_2)$ (and vice versa)
- (ii) for all pairs $u \leadsto_{G_1} v$ generating \leadsto_{G_1} , also $u \equiv_{L(G_2)} v$ (and vice versa)

Theorem

Let G_1 and G_2 be CC. We can decide whether $L(G_1) = L(G_2)$.

⁶Sénizergues 1985.

So, are CC languages "MAT-teachable"?

So, are CC languages "MAT-teachable"?

Yes. . . but there is a slight mismatch:

So, are CC languages "MAT-teachable"?

Yes. . . but there is a slight mismatch:

► (Clark 2010) assumes an *extended* MAT.

So, are CC languages "MAT-teachable"?

Yes. . . but there is a slight mismatch:

- ► (Clark 2010) assumes an extended MAT.
- That is, hypothesis grammars may not be CC!

So, are CC languages "MAT-teachable"?

Yes. . . but there is a slight mismatch:

- ► (Clark 2010) assumes an extended MAT.
- That is, hypothesis grammars may not be CC!

Two plausible fixes:

So, are CC languages "MAT-teachable"?

Yes. . . but there is a slight mismatch:

- ► (Clark 2010) assumes an extended MAT.
- ► That is, hypothesis grammars may not be CC!

Two plausible fixes:

▶ Adjust learning algorithm to have CC grammars as hypotheses.

So, are CC languages "MAT-teachable"?

Yes. . . but there is a slight mismatch:

- ► (Clark 2010) assumes an extended MAT.
- That is, hypothesis grammars may not be CC!

Two plausible fixes:

- ▶ Adjust learning algorithm to have CC grammars as hypotheses.
- Extend decision procedure, requiring only one grammar to be CC.

Further work

Many open questions:

► Are CC grammars more expressive than pre-NTS grammars?

Further work

Many open questions:

- ► Are CC grammars more expressive than pre-NTS grammars?
- ▶ Is the language of every CC grammar a DCFL?

Further work

Many open questions:

- Are CC grammars more expressive than pre-NTS grammars?
- ▶ Is the language of every CC grammar a DCFL?
- ▶ Is it decidable whether a given grammar is CC?

Lemma

Let G be CC, and let R be regular.

We can create a CC grammar G_R such that $L(G_R) = L(G) \cap R$.

19

Lemma

Let G be CC, and let R be regular.

We can create a CC grammar G_R such that $L(G_R) = L(G) \cap R$.

Lemma

Let $h: \Sigma^* \to \Sigma^*$ be a strictly alphabetic morphism, that is, $h(a) \in \Sigma$ for all $a \in \Sigma$.

We can create a CC grammar G^h such that $L(G^h) = h^{-1}(L(G))$.

For $a \in \Sigma$, add \bar{a} to Σ .

Let $h: \Sigma \to \Sigma$ be such that $h(a) = h(\bar{a}) = a$.

Create G^h such that $L(G^h) = h^{-1}(L(G))$.

For $a \in \Sigma$, add \bar{a} to Σ .

Let $h: \Sigma \to \Sigma$ be such that $h(a) = h(\bar{a}) = a$.

Create G^h such that $L(G^h) = h^{-1}(L(G))$.

Intuition

 G^h is the same as G, but positions in every word can be "marked" by $\bar{}$.

20

Note that \mathcal{I}_G is a regular language.

Create G_w such that $L(G_w) = L(G^h) \cap \mathcal{I}_G \bar{w} \mathcal{I}_G$.

Now $G_w = \{u\bar{w}v : uwv \in L(G), u, v \in \mathcal{I}_G\}.$

Note that \mathcal{I}_G is a regular language.

Create G_w such that $L(G_w) = L(G^h) \cap \mathcal{I}_G \bar{w} \mathcal{I}_G$.

Now $G_w = \{u\bar{w}v : uwv \in L(G), u, v \in \mathcal{I}_G\}.$

Intuition

 $L(G_w)$ has words in L(G) with w as a marked substring, with context reduced by \leadsto_G .

Lemma

Without loss of generality, every rule generating \leadsto_{G_w} overlaps and preserves $\bar{w}.$

Lemma

Without loss of generality, every rule generating \leadsto_{G_w} overlaps and preserves \bar{w} .

We can now create a reduction $\leadsto_{G[w]}$ and a finite set S_w such that

- ▶ Every rule generating $\leadsto_{G[w]}$ contains and preserves \sharp .

Lemma

Without loss of generality, every rule generating \leadsto_{G_w} overlaps and preserves \bar{w} .

We can now create a reduction $\leadsto_{G[w]}$ and a finite set S_w such that

- ▶ Every rule generating $\leadsto_{G[w]}$ contains and preserves \sharp .

The DPDA M_w acts by reading $u \sharp v$ up to \sharp , putting the input on the stack. Then:

Lemma

Without loss of generality, every rule generating \leadsto_{G_w} overlaps and preserves \bar{w} .

We can now create a reduction $\leadsto_{G[w]}$ and a finite set S_w such that

- ▶ Every rule generating $\leadsto_{G[w]}$ contains and preserves \sharp .

The DPDA M_w acts by reading $u \sharp v$ up to \sharp , putting the input on the stack. Then:

▶ Pop from the stack or read from input into two buffers (encoded in state).

Lemma

Without loss of generality, every rule generating \leadsto_{G_w} overlaps and preserves \bar{w} .

We can now create a reduction $\leadsto_{G[w]}$ and a finite set S_w such that

- ▶ Every rule generating $\leadsto_{G[w]}$ contains and preserves \sharp .

The DPDA M_w acts by reading $u \sharp v$ up to \sharp , putting the input on the stack. Then:

- ▶ Pop from the stack or read from input into two buffers (encoded in state).
- ▶ Whenever possible, reduce according to the rules from $\leadsto_{G[w]}$.

Lemma

Without loss of generality, every rule generating \leadsto_{G_w} overlaps and preserves \bar{w} .

We can now create a reduction $\leadsto_{G[w]}$ and a finite set S_w such that

- ▶ Every rule generating $\leadsto_{G[w]}$ contains and preserves \sharp .

The DPDA M_w acts by reading $u \sharp v$ up to \sharp , putting the input on the stack. Then:

- ▶ Pop from the stack or read from input into two buffers (encoded in state).
- ▶ Whenever possible, reduce according to the rules from $\leadsto_{G[w]}$.
- \blacktriangleright When the buffer resembles S_w and the input and stack are empty, accept.

Lemma

Without loss of generality, every rule generating \leadsto_{G_w} overlaps and preserves \bar{w} .

We can now create a reduction $\leadsto_{G[w]}$ and a finite set S_w such that

- ▶ Every rule generating $\leadsto_{G[w]}$ contains and preserves \sharp .
- $\blacktriangleright \{x \in \Sigma^* : x \leadsto_{G[w]} y \in S_w\} = \{u \sharp v : uwv \in L(G), \ u, v \in \mathcal{I}_G\}$

The DPDA M_w acts by reading $u \sharp v$ up to \sharp , putting the input on the stack. Then:

- Pop from the stack or read from input into two buffers (encoded in state).
- ▶ Whenever possible, reduce according to the rules from $\leadsto_{G[w]}$.
- ightharpoonup When the buffer resembles S_w and the input and stack are empty, accept.

With some analysis, we find that $L(M_w) = \{u \sharp v : uwv \in L(G), u, v \in \mathcal{I}_G\}.$

Given a congruence \equiv , we can extend it a congruence $\hat{\equiv}$ on $(\Sigma \cup V)^*$, by stipulating

$$\frac{\vartheta_{G}(\alpha) \equiv \vartheta_{G}(\beta)}{\alpha \triangleq \beta}$$

Given a congruence \equiv , we can extend it a congruence $\hat{\equiv}$ on $(\Sigma \cup V)^*$, by stipulating

$$\frac{\vartheta_{G}(\alpha) \equiv \vartheta_{G}(\beta)}{\alpha \triangleq \beta}$$

Lemma

Let \equiv be a congruence on Σ^* .

The following are equivalent:

- (i) For all productions $A \rightarrow \alpha$, it holds that $A \triangleq \alpha$
- (ii) For all $A \in V$ and $w, x \in L(G, A)$, it holds that $w \equiv x$.

Theorem

If $\equiv_{L(G)}$ is decidable, then we can decide whether G is CC.

Proof.

For $A \to \alpha$, check whether $A \triangleq_{L(G)} \alpha$, i.e., whether $\vartheta_G(A) \equiv_{L(G)} \vartheta_G(\alpha)$.

24

Theorem

If $\equiv_{L(G)}$ is decidable, then we can decide whether G is CC.

Proof.

For $A \to \alpha$, check whether $A \triangleq_{L(G)} \alpha$, i.e., whether $\vartheta_G(A) \equiv_{L(G)} \vartheta_G(\alpha)$.

Corollary

If L(G) is a deterministic CFL, then it is decidable whether G is CC.