Guarded Kleene Algebra with Tests, redux

Tobias Kappé

Institute for Logic, Language and Computation, University of Amsterdam
PLDG - August 31, 2022

Joint work with ...

Todd Schmid (UCL)

Dexter Kozen (Cornell)

Alexandra Silva (Cornell, UCL)

Motivation: comparing programs

if not a then		if a then
e;		f;
else	\equiv	else
f;		e;
end		end

Motivation: comparing programs

if a then		
e;		
while a do		while a do
e;		e;
end		end
end		

A more complicated equivalence

while \mathbf{a} and \mathbf{b} do	\vdots	
$\mathbf{e} ;$		while a do
end		if b then
while a do		e;
\quad f;		else
while a and b do		f;
\quad e;		end
\quad end		end
end		

Initial questions

- What is the minimal set of axioms?
- Are those axioms complete w.r.t. some model?
- Can we decide axiomatic equivalence?

Condensing the syntax

Treat while-programs as expressions - c.f. (Kozen and Tseng 2008).

Condensing the syntax

Treat while-programs as expressions - c.f. (Kozen and Tseng 2008).

$$
\begin{aligned}
& \mathbf{a}, \mathbf{b}::=t \in T|\mathbf{a}+\mathbf{b}| \mathbf{a b}|\overline{\mathbf{a}}| 0 \mid 1 \\
& \mathbf{e}, \mathbf{f}::=\mathbf{a}|p \in \Sigma| \mathbf{e f}\left|\mathbf{e}+{ }_{\mathbf{a}} \mathbf{f}\right| \mathbf{e}^{(\mathbf{a})}
\end{aligned}
$$

Condensing the syntax

Treat while-programs as expressions - c.f. (Kozen and Tseng 2008).

$$
\begin{gathered}
\mathbf{a}, \mathbf{b}::=t \in T|\mathbf{a}+\mathbf{b}| \mathbf{a b}|\overline{\mathbf{a}}| 0 \mid 1 \\
\\
\mathbf{a} \text { or } \mathbf{b} \\
\mathbf{e}, \mathbf{f}::=\mathbf{a}|p \in \Sigma| \mathbf{e f}\left|\mathbf{e}+{ }_{\mathbf{a}} \mathbf{f}\right| \mathbf{e}^{(\mathrm{a})}
\end{gathered}
$$

Condensing the syntax

Treat while-programs as expressions - c.f. (Kozen and Tseng 2008).

$$
\begin{gathered}
\mathbf{a}, \mathbf{b}::=t \in T|\mathbf{a}+\mathbf{b}| \mathbf{a b}|\overline{\mathbf{a}}| 0 \mid 1 \\
\mathbf{a} \text { and } \mathbf{b} \\
\mathbf{e}, \mathbf{f}::=\mathbf{a}|p \in \Sigma| \mathbf{e f}\left|\mathbf{e}+{ }_{\mathbf{a}} \mathbf{f}\right| \mathbf{e}^{(\mathbf{a})}
\end{gathered}
$$

Condensing the syntax

Treat while-programs as expressions - c.f. (Kozen and Tseng 2008).

$$
\begin{gathered}
\mathbf{a}, \mathbf{b}::=t \in T|\mathbf{a}+\mathbf{b}| \mathbf{a b}|\overline{\mathbf{a}}| 0 \mid 1 \\
\operatorname{not} \mathbf{a} \\
\mathbf{e}, \mathbf{f}::=\mathbf{a}|p \in \Sigma| \mathbf{e f}\left|\mathbf{e}+{ }_{\mathbf{a}} \mathbf{f}\right| \mathbf{e}^{(\mathrm{a})}
\end{gathered}
$$

Condensing the syntax

Treat while-programs as expressions - c.f. (Kozen and Tseng 2008).

$$
\begin{array}{r}
\mathbf{a}, \mathbf{b}::=t \in T|\mathbf{a}+\mathbf{b}| \mathbf{a b}|\overline{\mathbf{a}}| 0 \mid 1 \\
\text { false } \\
\mathbf{e}, \mathbf{f}::=\mathbf{a}|p \in \Sigma| \mathbf{e f}\left|\mathbf{e}+{ }_{\mathbf{a}} \mathbf{f}\right| \mathbf{e}^{(\mathrm{a})}
\end{array}
$$

Condensing the syntax

Treat while-programs as expressions - c.f. (Kozen and Tseng 2008).

$$
\begin{array}{r}
\mathbf{a}, \mathbf{b}::=t \in T|\mathbf{a}+\mathbf{b}| \mathbf{a b}|\overline{\mathbf{a}}| 0 \mid \\
\text { true } \\
\mathbf{e}, \mathbf{f}::=\mathbf{a}|p \in \Sigma| \mathbf{e f}\left|\mathbf{e}+{ }_{\mathbf{a}} \mathbf{f}\right| \mathbf{e}^{(\mathrm{a})}
\end{array}
$$

Condensing the syntax

Treat while-programs as expressions - c.f. (Kozen and Tseng 2008).

$$
\begin{aligned}
& \mathbf{a}, \mathbf{b}::=t \in T|\mathbf{a}+\mathbf{b}| \mathbf{a b}|\overline{\mathbf{a}}| 0 \mid 1 \\
& \mathbf{e}, \mathbf{f}::=\mathbf{a}|p \in \Sigma| \mathbf{e f}\left|\mathbf{e}+{ }_{\mathbf{a}} \mathbf{f}\right| \mathbf{e}^{(\mathrm{a})} \\
& \text { assert } \mathbf{a}
\end{aligned}
$$

Condensing the syntax

Treat while-programs as expressions - c.f. (Kozen and Tseng 2008).

$$
\begin{aligned}
& \mathbf{a}, \mathbf{b}::=t \in T|\mathbf{a}+\mathbf{b}| \mathbf{a b}|\overline{\mathbf{a}}| 0 \mid 1 \\
& \mathbf{e}, \mathbf{f}::=\mathbf{a}|p \in \Sigma| \mathbf{e f}\left|\mathbf{e}+{ }_{\mathbf{a}} \mathbf{f}\right| \mathbf{e}^{(\mathbf{a})}
\end{aligned}
$$

Condensing the syntax

Treat while-programs as expressions - c.f. (Kozen and Tseng 2008).

$$
\begin{gathered}
\mathbf{a}, \mathbf{b}::=t \in T|\mathbf{a}+\mathbf{b}| \mathbf{a b}|\overline{\mathbf{a}}| 0 \mid 1 \\
\mathbf{e}, \mathbf{f}::=\mathbf{a}|p \in \Sigma| \mathbf{e f}\left|\mathbf{e}+{ }_{\mathbf{a}} \mathbf{f}\right| \mathbf{e}^{(\mathbf{a})} \\
\mathbf{e} ; \mathbf{f}
\end{gathered}
$$

Condensing the syntax

Treat while-programs as expressions - c.f. (Kozen and Tseng 2008).

$$
\begin{array}{r}
\mathbf{a}, \mathbf{b}::=t \in T|\mathbf{a}+\mathbf{b}| \mathbf{a b}|\overline{\mathbf{a}}| 0 \mid 1 \\
\mathbf{e}, \mathbf{f}::=\mathbf{a}|p \in \Sigma| \mathbf{e f}\left|\mathbf{e}+{ }_{\mathbf{a}} \mathbf{f}\right| \mathbf{e}^{(\mathrm{a})} \\
\\
\quad \text { if a then } \mathbf{e} \text { else } \mathbf{f}
\end{array}
$$

Condensing the syntax

Treat while-programs as expressions - c.f. (Kozen and Tseng 2008).

$$
\begin{aligned}
& \mathbf{a}, \mathbf{b}::=t \in T|\mathbf{a}+\mathbf{b}| \mathbf{a b}|\overline{\mathbf{a}}| 0 \mid 1 \\
& \mathbf{e}, \mathbf{f}::=\mathbf{a}|p \in \Sigma| \mathbf{e f}\left|\mathbf{e}+{ }_{\mathbf{a}} \mathbf{f}\right| \mathbf{e}^{(\mathrm{a})}
\end{aligned}
$$

while a do e

Some example axioms

$$
\mathbf{e}+{ }_{\mathrm{a}} \mathbf{e} \equiv \mathbf{e}
$$

Some example axioms

$$
\mathbf{e}+{ }_{\mathrm{a}} \mathbf{e} \equiv \mathbf{e} \quad \mathbf{e}+{ }_{\mathrm{a}} \mathbf{f} \equiv \mathbf{f}+{ }_{\overline{\mathrm{a}}} \mathbf{e}
$$

Some example axioms

$$
\mathbf{e}+{ }_{\mathrm{a}} \mathbf{e} \equiv \mathbf{e} \quad \mathbf{e}+{ }_{\mathrm{a}} \mathbf{f} \equiv \mathbf{f}+{ }_{\mathrm{a}} \mathbf{e} \quad \mathbf{e}+{ }_{\mathrm{a}} \mathbf{f} \equiv \mathbf{a} \mathbf{e}+{ }_{\mathrm{a}} \mathbf{f}
$$

Some example axioms

$$
\mathbf{e}+{ }_{\mathrm{a}} \mathbf{e} \equiv \mathbf{e} \quad \mathbf{e}+{ }_{\mathrm{a}} \mathbf{f} \equiv \mathbf{f}+{ }_{\bar{a}} \mathbf{e} \quad \mathbf{e}+{ }_{\mathrm{a}} \mathbf{f} \equiv \mathbf{a e}+{ }_{\mathrm{a}} \mathbf{f} \quad \overline{\mathrm{a}} \mathbf{a} \equiv 0
$$

Some example axioms

$$
\mathbf{e}+{ }_{a} \mathbf{e} \equiv \mathbf{e} \quad \mathbf{e}+{ }_{\mathrm{a}} \mathbf{f} \equiv \mathbf{f}+{ }_{\bar{a}} \mathbf{e} \quad \mathbf{e}+{ }_{\mathrm{a}} \mathbf{f} \equiv \mathbf{a e}+{ }_{\mathrm{a}} \mathbf{f} \quad \overline{\mathbf{a}} \mathbf{a} \equiv 0 \quad 0 \mathbf{e} \equiv 0
$$

Some example axioms

$$
\mathbf{e}+{ }_{a} \mathbf{e} \equiv \mathbf{e} \quad \mathbf{e}+{ }_{\mathrm{a}} \mathbf{f} \equiv \mathbf{f}+{ }_{\overline{\mathrm{a}}} \mathbf{e} \quad \mathbf{e}+{ }_{\mathrm{a}} \mathbf{f} \equiv \mathbf{a e}+{ }_{\mathrm{a}} \mathbf{f} \quad \overline{\mathbf{a}} \mathbf{a} \equiv 0 \quad 0 \mathbf{e} \equiv 0
$$

if a then e else assert false $=\mathbf{e}+{ }_{a} 0$

Some example axioms

$$
\mathbf{e}+{ }_{a} \mathbf{e} \equiv \mathbf{e} \quad \mathbf{e}+{ }_{a} \mathbf{f} \equiv \mathbf{f}+{ }_{\bar{a}} \mathbf{e} \quad, \quad \mathbf{e}+\mathbf{a} \mathbf{f} \equiv \mathbf{a e}+\mathbf{a} \mathbf{f} \quad \quad \overline{\mathbf{a}} \mathbf{a} \equiv 0 \quad 0 \mathbf{e} \equiv 0
$$

if a then e else assert false $=\mathbf{e}+{ }_{a} 0 \equiv \mathbf{a e}+{ }_{a} 0$

Some example axioms

$$
\mathbf{e}+{ }_{a} \mathbf{e} \equiv \mathbf{e} \quad \begin{array}{lll}
\mathbf{e}+\mathrm{a}_{\mathrm{a}} \boldsymbol{f} \equiv \mathbf{f}+\bar{a} \mathbf{e} & \mathbf{e}+{ }_{\mathrm{a}} \mathbf{f} \equiv \mathbf{a e}+{ }_{\mathrm{a}} \mathbf{f} \quad \overline{\mathbf{a}} \mathbf{a} \equiv 0 & 0 \mathbf{e} \equiv 0
\end{array}
$$

if a then e else assert false $=\mathbf{e}+{ }_{a} 0 \equiv \mathbf{a e}+{ }_{a} 0$

$$
\equiv 0+\overline{\mathrm{a}} \text { ae }
$$

Some example axioms

$$
\mathbf{e}+{ }_{a} \mathbf{e} \equiv \mathbf{e} \quad \mathbf{e}+{ }_{a} \mathbf{f} \equiv \mathbf{f}+{ }_{a} \mathbf{e} \quad \mathbf{e}+{ }_{a} \mathbf{f} \equiv \mathbf{a e}+{ }_{a} \mathbf{f} \quad \bar{a} \mathbf{a} \equiv 0
$$

if a then e else assert false $=\mathbf{e}+{ }_{a} 0 \equiv \mathbf{a e}+{ }_{a} 0$

$$
\begin{aligned}
& \equiv 0+\overline{\mathrm{a}} \mathbf{a e} \\
& \equiv 0 \mathrm{e}+\overline{\mathrm{a}} \text { ae }
\end{aligned}
$$

Some example axioms

$$
\mathbf{e}+{ }_{\mathbf{a}} \mathbf{e} \equiv \mathbf{e} \quad \mathbf{e}+{ }_{\mathrm{a}} \mathbf{f} \equiv \mathbf{f}+{ }_{\mathrm{a}} \mathbf{e} \quad \mathbf{e}+{ }_{\mathbf{a}} \mathbf{f} \equiv \mathbf{a e}+{ }_{\mathrm{a}} \mathbf{f} \quad 0 \mathbf{e}
$$

if a then e else assert false $=\mathbf{e}+{ }_{a} 0 \equiv \mathbf{a e}+{ }_{a} 0$

$$
\begin{aligned}
& \equiv 0+\overline{\mathrm{a}} \text { ae } \\
& \equiv 0 \mathrm{e}+\overline{\mathrm{a}}^{\text {ae }} \\
& \equiv \overline{\mathrm{a}} \mathrm{ae}+{ }_{\mathrm{a}} \text { ae }
\end{aligned}
$$

Some example axioms

$$
\mathbf{e}+{ }_{a} \mathbf{e} \equiv \mathbf{e} \quad \mathbf{e}+{ }_{a} \mathbf{f} \equiv \mathbf{f}+{ }_{\bar{a}} \mathbf{e} \quad, \quad \mathbf{e}+\mathbf{a} \mathbf{f} \equiv \mathbf{a e}+\mathbf{a}_{\mathbf{a}} \mathbf{f} \quad \overline{\mathbf{a}} \mathbf{a} \equiv 0 \quad 0 \mathbf{e} \equiv 0
$$

if a then e else assert false $=\mathbf{e}+{ }_{a} 0 \equiv \mathbf{a e}+{ }_{a} 0$

$$
\begin{aligned}
& \equiv 0+\overline{\mathrm{a}} \text { ae } \\
& \equiv 0 \mathrm{e}+\overline{\mathrm{a}} \text { ae } \\
& \equiv \overline{\text { abe }+{ }_{\bar{a}} \text { ae }} \\
& \equiv \text { ae }+\overline{\mathrm{a}} \text { ae }
\end{aligned}
$$

Some example axioms

$$
\mathbf{e}+{ }_{a} \mathbf{f} \equiv \mathbf{f}+{ }_{a} \mathbf{e} \quad \mathbf{e}+{ }_{a} \mathbf{f} \equiv \mathbf{e} \mathbf{e}+{ }_{a} \mathbf{f} \quad \overline{\mathbf{a}} \mathbf{a} \equiv 0 \quad 0 \mathbf{e} \equiv 0
$$

if a then \mathbf{e} else assert false $=\mathbf{e}+{ }_{a} 0 \equiv \mathbf{a e}+{ }_{a} 0$

$$
\begin{aligned}
& \equiv 0+{ }_{\overline{\mathrm{a}}} \text { ae } \\
& \equiv 0 \mathrm{e}+\overline{\mathrm{a}} \text { ae } \\
& \equiv \overline{\text { àae }+{ }_{\mathrm{a}} \text { ae }} \\
& \equiv \mathrm{ae}+\mathrm{a}_{\mathrm{a}} \text { ae } \\
& \equiv \text { ae }
\end{aligned}
$$

$$
=\text { assert a; e }
$$

Guarded Kleene Algebra with Tests

$$
\begin{aligned}
& \mathbf{e}+{ }_{a} \mathbf{e} \equiv \mathbf{e} \\
& \mathbf{e}+{ }_{a} \mathbf{f} \equiv \mathbf{f}+{ }_{\mathrm{a}} \mathbf{e} \\
& \left(\mathbf{e}+{ }_{a} \mathbf{f}\right)+_{b} \mathbf{g} \equiv \mathbf{e}+{ }_{a b}\left(\mathbf{f}+{ }_{b} \mathbf{g}\right) \\
& e+{ }_{a} f \equiv a e+{ }_{a} f \\
& e g+a f g \equiv(e+a f) g \\
& (\mathrm{ef}) \mathrm{g} \equiv \mathrm{e}(\mathrm{fg}) \\
& 0 \mathrm{e} \equiv 0 \\
& \mathrm{e} 0 \equiv 0 \quad 1 \mathrm{e} \equiv \mathrm{e} \\
& \mathbf{e} 1 \equiv \mathbf{e} \quad \mathbf{e}^{(\mathrm{a})} \equiv \mathbf{e} \mathrm{e}^{(\mathrm{a})}+{ }_{\mathrm{a}} 1 \\
& (e+a 1)^{(b)} \equiv(a e)^{(b)}
\end{aligned}
$$

Guarded Kleene Algebra with Tests

Fixpoints: If $\mathbf{f e}+_{b} \mathbf{g} \equiv \mathbf{e}$ and \mathbf{e} is productive, then $\mathbf{f}^{(\mathbf{b})} \mathbf{g} \equiv \mathbf{e}$.

Guarded Kleene Algebra with Tests

Fixpoints: If $\mathbf{f e}+_{b} \mathbf{g} \equiv \mathbf{e}$ and \mathbf{e} is productive, then $f^{(b)} \mathbf{g} \equiv \mathbf{e}$.

Unique solutions: affine systems of equations, i.e., of the form

$$
\begin{array}{ccccccc}
\mathbf{e}_{1,1} \cdot x_{1} & +_{\mathbf{a}_{1,1}} & \mathbf{e}_{1,2} \cdot x_{2} & +_{\mathbf{a}_{1,2}} & \cdots & +_{\mathbf{a}_{1, n}} & \mathbf{b}_{1}
\end{array}
$$

have at most one solution (up to \equiv) — provided the $\mathbf{e}_{i, j}$ are productive.

Guarded Kleene Algebra with Tests

Theorem (Smolka et al. (2020))

- \equiv is sound and complete w.r.t. a natural model.
- \equiv is decidable in almost-linear time.

A more complicated equivalence
while \mathbf{a} and \mathbf{b} do e;
end
while a do
f; $\quad \equiv$
while \mathbf{a} and \mathbf{b} do
e;
end
end

$$
\mathrm{e}^{(\mathrm{ab})} \cdot\left(\mathrm{fe}^{(\mathrm{ab})}\right)^{(\mathrm{a})}
$$

while a do if \mathbf{b} then e;
else f; end
end

$$
\left(e+_{b} f\right)^{(a)}
$$

Followup questions

- What if we drop the axiom e $0 \equiv 0$?
- How expressive is this syntax?
- Can we simplify the last axiom?

Followup questions

- What if we drop the axiom e $0 \equiv 0$?
- How expressive is this syntax?
- Can we simplify the last axiom?

This talk:

- Answer to the first question.
- Progress on the second question.

Followup questions

- What if we drop the axiom e $0 \equiv 0$?
- How expressive is this syntax?
- Can we simplify the last axiom?

This talk:

- Answer to the first question.
- Progress on the second question.

Third question remains open!

The axiom $\mathbf{e} 0 \equiv 0$

Intuition: "failing now is the same as failing later"...

The axiom $\mathbf{e} 0 \equiv 0$

Intuition: "failing now is the same as failing later" ...
... but what if the actions before failure matter?

But wait, there's more

$$
\text { Provable in GKAT: } \mathbf{e}^{(\mathrm{a})} \equiv \mathbf{e}^{(\mathrm{a})} \overline{\mathbf{a}} .
$$

But wait, there's more

$$
\text { Provable in GKAT: } \mathrm{e}^{(\mathrm{a})} \equiv \mathrm{e}^{(\mathrm{a})} \overline{\mathbf{a}} .
$$

In particular, while true do e end

But wait, there's more

$$
\text { Provable in GKAT: } \mathrm{e}^{(\mathrm{a})} \equiv \mathrm{e}^{(\mathrm{a})} \overline{\mathbf{a}} .
$$

In particular, while true do \mathbf{e} end $=\mathbf{e}^{(1)}$

But wait, there's more

$$
\text { Provable in GKAT: } \mathrm{e}^{(\mathrm{a})} \equiv \mathrm{e}^{(\mathrm{a})} \overline{\mathbf{a}} .
$$

In particular,
while true do e end $=\mathbf{e}^{(1)}$

$$
\equiv \mathbf{e}^{(1)} \cdot \overline{1}
$$

But wait, there's more

Provable in GKAT: $\mathbf{e}^{(\mathrm{a})} \equiv \mathbf{e}^{(\mathrm{a})} \overline{\mathbf{a}}$.
In particular,
while true do e end $=\mathbf{e}^{(1)}$

$$
\begin{aligned}
& \equiv \mathbf{e}^{(1)} \cdot \overline{1} \\
& \equiv \mathbf{e}^{(1)} \cdot 0
\end{aligned}
$$

But wait, there's more

$$
\text { Provable in GKAT: } \mathrm{e}^{(\mathrm{a})} \equiv \mathrm{e}^{(\mathrm{a})} \overline{\mathbf{a}} .
$$

In particular,

$$
\begin{aligned}
\text { while true do e end } & =\mathbf{e}^{(1)} \\
& \equiv \mathbf{e}^{(1)} \cdot \overline{1} \\
& \equiv \mathbf{e}^{(1)} \cdot 0 \\
& \equiv 0 \quad \text { =assert false }
\end{aligned}
$$

But wait, there's more

$$
\text { Provable in GKAT: } \mathrm{e}^{(\mathrm{a})} \equiv \mathrm{e}^{(\mathrm{a})} \overline{\mathbf{a}} .
$$

In particular,

$$
\begin{aligned}
\text { while true do e end } & =\mathbf{e}^{(1)} \\
& \equiv \mathbf{e}^{(1)} \cdot \overline{1} \\
& \equiv \mathbf{e}^{(1)} \cdot 0 \\
& \equiv 0 \quad \text { = assert false }
\end{aligned}
$$

$$
8
$$

But wait, there's more

$$
\text { Provable in GKAT: } \mathrm{e}^{(\mathrm{a})} \equiv \mathrm{e}^{(\mathrm{a})} \overline{\mathbf{a}} .
$$

In particular,

$$
\begin{aligned}
\text { while true do e end } & =\mathbf{e}^{(1)} \\
& \equiv \mathbf{e}^{(1)} \cdot \overline{1} \\
& \equiv \mathbf{e}^{(1)} \cdot 0 \\
& \equiv 0 \quad \text { = assert false }
\end{aligned}
$$

See also (Mamouras 2017).

Mission statement

Question
Let \equiv_{0} be like \equiv, but without relating e0 to 0 .
Can we recover the same results for this finer equivalence?

Mission statement

Question
Let \equiv_{0} be like \equiv, but without relating e0 to 0 .
Can we recover the same results for this finer equivalence?

Roadmap:

1. Find a model satisfying the axioms.
2. Prove soundness and completeness.
3. Decide equivalence within that model.

Guarded trees - informal description

A tree where, for each set of tests $\alpha \subseteq T$, a node either...

- ... transitions to an "accept" or "reject" leaf node, or
- ...transitions to another internal node, executing an action $p \in \Sigma$.

Guarded trees - informal description

A tree where, for each set of tests $\alpha \subseteq T$, a node either...

- ...transitions to an "accept" or "reject" leaf node, or
- ...transitions to another internal node, executing an action $p \in \Sigma$.

Note: guarded trees may be infinite!

Guarded trees - example

Expressions to trees - base case

$$
a=\left\{b_{0}, b_{1}, \ldots\right\} \mapsto
$$

$$
p \in \Sigma \mapsto
$$

Expressions to trees - Party hat diagrams

Expressions to trees - Party hat diagrams

Expressions to trees - Party hat diagrams

A model in terms of guarded trees

Every expression e has an associated guarded tree $\llbracket \mathbf{e} \rrbracket$.

A model in terms of guarded trees

Every expression e has an associated guarded tree $\llbracket \mathbf{e} \rrbracket$.
The early termination axiom does not hold: $\llbracket \mathrm{e} 0 \rrbracket \neq \llbracket 0 \rrbracket$.

A model in terms of guarded trees

Every expression e has an associated guarded tree $\llbracket \mathbf{e} \rrbracket$.
The early termination axiom does not hold: $\llbracket \mathrm{e} 0 \rrbracket \neq \llbracket 0 \rrbracket$.

Question (Soundness \& Completeness)
Is $\mathrm{e} \equiv{ }_{0} \mathrm{f}$ equivalent to $\llbracket \mathrm{e} \rrbracket=\llbracket \mathrm{f} \rrbracket$?

A model in terms of guarded trees

Every expression e has an associated guarded tree $\llbracket \mathbf{e} \rrbracket$.
The early termination axiom does not hold: $\llbracket \mathrm{e} 0 \rrbracket \neq \llbracket 0 \rrbracket$.

Question (Soundness \& Completeness)
Is $\mathrm{e} \equiv{ }_{0} \mathrm{f}$ equivalent to $\llbracket \mathrm{e} \rrbracket=\llbracket \mathrm{f} \rrbracket$?

Question (Decidability)
Can we decide whether $\llbracket \mathbf{e} \rrbracket=\llbracket \mathrm{f} \rrbracket$?

Establishing completeness and decidability

```
Theorem (Soundness & Completeness)
e =of fif and only if \llbrackete\rrbracket= \llbracketf\rrbracket
```


Establishing completeness and decidability

Theorem (Soundness \& Completeness)
$\mathrm{e} \equiv{ }_{0} \mathrm{f}$ if and only if $\llbracket \mathrm{e} \rrbracket=\llbracket \mathrm{f} \rrbracket$

Theorem (Decidability for trees)
It is decidable whether $\llbracket \mathrm{e} \rrbracket=\llbracket \mathrm{f} \rrbracket$.

Establishing completeness and decidability

Theorem (Soundness \& Completeness)
$\mathrm{e} \equiv{ }_{0} \mathrm{f}$ if and only if $\llbracket \mathrm{e} \rrbracket=\llbracket \mathrm{f} \rrbracket$

Theorem (Decidability for trees)
It is decidable whether $\llbracket \mathrm{e} \rrbracket=\llbracket \mathrm{f} \rrbracket$.

Corollary (Decidability for terms) It is decidable whether $\mathrm{e} \equiv{ }_{0} \mathrm{f}$

Establishing completeness and decidability

Theorem (Soundness \& Completeness)
$\mathrm{e} \equiv{ }_{0} \mathrm{f}$ if and only if $\llbracket \mathrm{e} \rrbracket=\llbracket \mathrm{f} \rrbracket$

Theorem (Decidability for trees)
It is decidable whether $\llbracket \mathrm{e} \rrbracket=\llbracket \mathrm{f} \rrbracket$.

Corollary (Decidability for terms)
It is decidable whether $\mathrm{e} \equiv{ }_{0} \mathrm{f}$
Note: decision procedures are nearly linear - actually feasible!

Establishing completeness and decidability

Theorem (Soundness \& Completeness)
$\mathrm{e} \equiv{ }_{0} \mathrm{f}$ if and only if $\llbracket \mathrm{e} \rrbracket=\llbracket \mathrm{f} \rrbracket$

Theorem (Decidability for trees)
It is decidable whether $\llbracket \mathrm{e} \rrbracket=\llbracket \mathrm{f} \rrbracket$.

Corollary (Decidability for terms)
It is decidable whether $\mathrm{e} \equiv{ }_{0} \mathrm{f}$
Note: decision procedures are nearly linear - actually feasible!
The "old" results from (Smolka et al. 2020) can be recovered from these.

Expressiveness

Question

Let t be a guarded tree with finitely many distinct subtrees.

Is there an e such that $\llbracket \mathrm{e} \rrbracket=\mathrm{t}$?

Expressiveness

Question

Let t be a guarded tree with finitely many distinct subtrees.

Is there an e such that $\llbracket \mathrm{e} \rrbracket=\mathrm{t}$?

Not in general - for instance:

See also (Kozen and Tseng 2008).

Expressiveness

Question

Let t be a guarded tree with finitely many distinct subtrees.

Is there an e such that $\llbracket \mathrm{e} \rrbracket=\mathrm{t}$?
Reason: our syntax does not have goto. Only structured programs!

Not in general - for instance:

See also (Kozen and Tseng 2008).

Expressiveness

Question

Let t be a guarded tree with finitely many distinct subtrees.

Is there an e such that $\llbracket \mathrm{e} \rrbracket=\mathrm{t}$?
Reason: our syntax does not have goto. Only structured programs!
ℓ_{0} :if \mathbf{b} then p; goto ℓ_{1} else accept ℓ_{1} :if $\overline{\mathbf{b}}$ then q; goto ℓ_{0} else accept

Not in general - for instance:

See also (Kozen and Tseng 2008).

Further work

Question

Is it decidable whether, given a tree t , there exists an e such that $\llbracket \mathrm{e} \rrbracket=\mathrm{t}$?

Further work

Question

Is it decidable whether, given a tree t , there exists an \mathbf{e} such that $\llbracket \mathrm{e} \rrbracket=\mathrm{t}$?

Question
Can we identify rejection and looping without identifying early/late rejection?
What would be the appropriate axioms for such a semantics?

Overview

- GKAT describes general equivalences of programs.
- It admits a complete axiomatization and is decidable.
- The axiom $\mathrm{e} 0 \equiv 0$ may not be what you want.
- There is a model for the theory without this axiom.
- Soundness and completeness can be recovered.
- Lack of GOTO means not every tree is expressible.
https://kap.pe/slides
https://doi.org/10.4230/LIPIcs.ICALP. 2021.142

Bonus - Reduction to KAT

Syntax is special case of Kleene Algebra with Tests (KAT):

$$
\text { if a then e else } \mathbf{f} \text { end } \mapsto \mathbf{a} \cdot \mathbf{e}+\overline{\mathbf{a}} \cdot \mathbf{f}
$$

$$
\text { while a do e end } \mapsto(\mathbf{a} \cdot \mathbf{e})^{*} \cdot \overline{\mathbf{a}}
$$

Bonus - Reduction to KAT

Syntax is special case of Kleene Algebra with Tests (KAT):

$$
\begin{aligned}
& \text { if a then e else } f \text { end } \mapsto \mathbf{a} \cdot \mathbf{e}+\overline{\mathbf{a}} \cdot \mathbf{f} \\
& \text { while a do } \mathbf{e} \text { end } \mapsto(\mathbf{a} \cdot \mathbf{e})^{*} \cdot \overline{\mathbf{a}}
\end{aligned}
$$

Known results:

- There is a "nice" set of axioms for KAT.
- Soundness \& completeness for a straightforward model.
- Equivalence according to these axioms is decidable.

Bonus - Reduction to KAT

Equivalence in KAT is PSPACE-complete (Cohen, Kozen, and Smith 1996).

Bonus - Reduction to KAT

Equivalence in KAT is PSPACE-complete (Cohen, Kozen, and Smith 1996).
But for practical inputs, good algorithms scale well - e.g., (Foster et al. 2015):

References

固
Ernie Cohen，Dexter Kozen，and Frederick Smith（July 1996）．The Complexity of Kleene Algebra with Tests．Tech．rep．TR96－1598．Cornell University．handle： 1813／7253．
國 Nate Foster et al．（2015）．＂A Coalgebraic Decision Procedure for NetKAT＂．In： POPL，pp．343－355．DOI：10．1145／2676726．2677011．
國 Dexter Kozen and Wei－Lung（Dustin）Tseng（2008）．＂The Böhm－Jacopini Theorem is False，Propositionally＂．In：MPC，pp．177－192．Doi： 10．1007／978－3－540－70594－9＿11．
㬐 Konstantinos Mamouras（2017）．＂Equational Theories of Abnormal Termination Based on Kleene Algebra＂．In：FOSSACS．Vol．10203．Lecture Notes in Computer Science，pp．88－105．DOI：10．1007／978－3－662－54458－7＿6．
國 Steffen Smolka et al．（Jan．2020）．＂Guarded Kleene Algebra with Tests： Verification of Uninterpreted Programs in Nearly Linear Time＂．In：POPL．Doi： 10．1145／3371129．

