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Introduction

while a and b do

e;
end

while a do

f;
while a and b do

e;
end

end

while a do

if b then

e;
else

f;
end

end

?≡
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• Uninterpreted programs can be thought of as skeletons of programs.

• The structure of the program is there, but not the concrete actions.

• This allows reasoning about refactoring, optimisation, et cetera.
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Introduction

Contributions:

Nearly linear time decision procedure for equivalence.1

Axiomatization of uninterpreted program equivalence.

Kleene theorem for uninterpreted programs.

1For fixed number of tests.
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S. Smolka, N. Foster, J. Hsu, T. Kappé, D. Kozen, A. Silva Guarded Kleene Algebra with Tests POPL 2020 2 17



Introduction

Contributions:

Nearly linear time decision procedure for equivalence.1

Axiomatization of uninterpreted program equivalence.

Kleene theorem for uninterpreted programs.

1For fixed number of tests.
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Syntax and semantics

a,b ::= t ∈ T | a + b | ab | a | 0 | 1

e, f ::= a | p ∈ Σ | ef | e +a f | e(a)
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• We will use compact syntax to denote uninterpreted programs.

• Note: overloading conjunction and concatenation.
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Syntax and semantics

a,b ::= t ∈ T | a + b | ab | a | 0 | 1

e, f ::= a | p ∈ Σ | ef | e +a f

if a then e else f

| e(a)
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• We will use compact syntax to denote uninterpreted programs.

• Note: overloading conjunction and concatenation.



Syntax and semantics

a,b ::= t ∈ T | a + b | ab | a | 0 | 1

e, f ::= a | p ∈ Σ | ef | e +a f | e(a)

while a do e
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• We will use compact syntax to denote uninterpreted programs.

• Note: overloading conjunction and concatenation.



Syntax and semantics

while a do

if b then

e;
else

f;
end

end

while a and b do

e;
end

while a do

f;
while a and b do

e;
end

end

⇓

(e +b f)(a)

⇓

e(ab)(fe(ab))
(a)
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• The programs from before can now be written down like this.



Syntax and semantics

i =
(

sat : T → 2States, eval : Σ→ 2States2
)

e RiJeK

t ∈ T {(s, s) : s ∈ sat(t)}

a + b RiJaK ∪ RiJbK
ab RiJaK ∩ RiJbK
a States2 \ RiJaK
p ∈ Σ eval(p)

e +a f RiJaK ◦ RiJeK ∪ RiJaK ◦ RiJfK
ef RiJeK ◦ RiJfK
e(a) (RiJaK ◦ RiJeK)∗ ◦ RiJaK

S. Smolka, N. Foster, J. Hsu, T. Kappé, D. Kozen, A. Silva Guarded Kleene Algebra with Tests POPL 2020 5 17

• We can instantiate tests and actions to obtain a relational semantics.

• We can use sub-Markov kernels to give a probabilistic semantics.

• Equivalence means semantics are the same regardless of interpretation.
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Syntax and semantics

Atoms = 2T

α ∈ Atoms

α ∈ GS(Σ,T )

α,β ∈ Atoms p ∈ Σ
αpβ ∈ GS(Σ,T )

wα,αx ∈ GS(Σ,T )

wαx ∈ GS(Σ,T )

L � K = {wαx : wα ∈ L,αx ∈ K } L(n) = L � · · · � L︸ ︷︷ ︸
n times

L(∗) =
⋃
n∈N

L(n)
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• Parameterized semantics is intuitive, but not very easy to handle.

• We can abstract from the interpretation by giving a language semantics.

• The idea behind this semantics is that it gives all possible traces.

• A trace of a program consists of states interleaved with actions.

• Such traces are represented by guarded strings, defined as follows.

• Sets (languages) of guarded strings can be equipped with operators.
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• We can abstract from the interpretation by giving a language semantics.

• The idea behind this semantics is that it gives all possible traces.
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• Such traces are represented by guarded strings, defined as follows.
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Syntax and semantics

e JeK

t ∈ T {α ∈ Atoms : t ∈ α}
a + b JaK ∪ JbK
ab JaK ∩ JbK
a Atoms \ JaK
p ∈ Σ {αpβ : α,β ∈ Atoms}

e +a f JaK � JeK ∪ JaK � JfK
ef JeK � JfK

e(a) (JaK � JeK)(∗) � JaK
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• Semantics in terms of guarded strings given as follows.

• Semantics of a test is set of atoms (states) satisfying that test.

• Semantics of an action is an overapproximation — meaning is unknown.

• Inductive cases are as for the relational semantics.

• For example, trace of sequencing finds matching traces and fuses them.



Syntax and semantics

Theorem

JeK = JfK ⇐⇒ ∀i. RiJeK = RiJfK

How to check JeK = JfK:
1 Create automata that accept JeK and JfK.
2 Check automata for bisimilarity.
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• Parameterized interpretations are related to interpretation in guarded strings.

• We can check equivalence for all interpretations by comparing languages.

• Spoiler: implement languages in automata, compare those automata.

• Note: the conversion from expressions to automata is half a Kleene theorem.

• Complexity of procedure is nearly linear in size of automata.
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Axiomatization

e +a e ≡ e

e +a f ≡ f +a e e +a f ≡ ae +a f aa ≡ 0 0e ≡ 0

Example

if a then e else assert false = e +a 0

≡ ae +a 0

≡ 0 +a ae

≡ 0e +a ae

≡ aae +a ae

≡ ae +a ae

≡ ae = assert a; e
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• Branching between identical pieces of code can be eliminated.

• Branches can be flipped by negating the condition.

• The guard of a branch holds before the branch starts.

• Contradictory assertions are like asserting false.

• Asserting false means the rest of the code is not executed.

• With these axioms we can already derive some useful things.
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Axiomatization

e ≡ fe +a g

e ≡ f(a)g

Allows to derive 1 ≡ 1(1), i.e.,

while true do assert true ≡ assert true
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• First intuition for loop axioms is to characterise it as a fixpoint.

• Need to be careful, otherwise we can prove nonsense.
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Axiomatization

e ≡ fe +a g f is productive

e ≡ f(a)g

e(a) ≡ eea +a 1 (e +a 1)(b) ≡ (ae)(b)

Lemma

For every e, there exists a productive ê such that e(b) ≡ ê(b).

Lemma

e(a) ≡ e(a)a e(a) ≡ (ae)(a) e(ab)e(b) ≡ e(b)
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• Instead we need to put a side-condition on the loop body; see paper for details.

• Loops are themselves a fixpoint, and skips inside loops can be eliminated.

• We can make the body of any loop productive.

• With these axioms, we can now prove useful things about loops.
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• We can make the body of any loop productive.

• With these axioms, we can now prove useful things about loops.
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Axiomatization

Theorem (Soundness)

If e ≡ f, then JeK = JfK.

How about the converse?
1 A 7→ S(A) with e ≡ S(Ae).
2 If A ∼ A ′, then S(A) ≡ S(A ′).

JeK = JfK =⇒ L(Ae) = L(Af)

=⇒ Ae ∼ Af

=⇒ S(Ae) ≡ S(Af)

=⇒ e ≡ f
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• The axioms (minus the naive fixpoint) are sound w.r.t. the semantics.

• We need two ingredients to show the converse, i.e., completeness:

– An automaton can be converted to an expression.
– NB: this is the second half of a Kleene theorem.
– The automaton of an expression yields an equivalent expression.
– Bisimilar automata have equivalent expressions.

• This is enough to conclude completeness, as follows.

• With some more axioms and a generalized fixpoint, we also have the converse.
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A Kleene theorem

s1 s2
α

β/p

γ/q

βpγqα ∈ L(s1)

(X , δ : X → (2 + Σ× X )Atoms)
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• A Kleene theorem is the powerhouse of our results.

• Some details about the automata and the conversion operators.

• Given an atom, either accept, reject or transition with an action.

• Word accepted is concatenation of labels, including acceptance.
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• Conversion of expression to automaton by induction on structure.

• Inductive cases are shown here.

– For branching, we juxtapose and make a new initial state based on the guard.
– For sequencing, we juxtapose and reroute accepting transitions on the left.
– For loops, we reroute accepting transitions that validate the guard to the initial state.

• This translation is linear in the size of e.
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• Conversion of automaton back to expression requires structural restriction.

• This is because constructs like goto are absent from our language.

• Well-nested automata are inductively constructed to guarantee this structure.

• We can exploit this inductive structure to craft an expression.
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• Conversion of automaton back to expression requires structural restriction.

• This is because constructs like goto are absent from our language.

• Well-nested automata are inductively constructed to guarantee this structure.

• We can exploit this inductive structure to craft an expression.



A Kleene theorem

Theorem

Let L ⊆ (Σ ∪ Atoms)∗. The following are equivalent:

1 L = JeK for some e.

2 L is accepted by a well-nested and finite automaton.
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• This conversion is correct: the automaton created accepts the same language.

• We can go the other way as well for well-structured automata.

• In fact, the automaton created from an expression is well-structured.



Further work

Coalgebraic perspective, coequations

Instantiation framework; hypotheses

Fully algebraic axiomatization
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Bonus: non-well-nested automaton

From [Kozen and Tseng 2008]:
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α
2 /p
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α
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