
Guarded Kleene Algebra with Tests
Verification of Uninterpreted Programs in Nearly Linear Time

Steffen Smolka1 Nate Foster1 Justin Hsu2

Tobias Kappé3 Dexter Kozen1 Alexandra Silva3

1Cornell University

2University of Wisconsin-Madison

3University College London

POPL 2020

Introduction

while a and b do

e;
end

while a do

f;
while a and b do

e;
end

end

while a do

if b then

e;
else

f;
end

end

?≡

S. Smolka, N. Foster, J. Hsu, T. Kappé, D. Kozen, A. Silva Guarded Kleene Algebra with Tests POPL 2020 1 17

• Uninterpreted programs can be thought of as skeletons of programs.

• The structure of the program is there, but not the concrete actions.

• This allows reasoning about refactoring, optimisation, et cetera.

Introduction

while a and b do

e;
end

while a do

f;
while a and b do

e;
end

end

while a do

if b then

e;
else

f;
end

end

?≡

S. Smolka, N. Foster, J. Hsu, T. Kappé, D. Kozen, A. Silva Guarded Kleene Algebra with Tests POPL 2020 1 17

• Uninterpreted programs can be thought of as skeletons of programs.

• The structure of the program is there, but not the concrete actions.

• This allows reasoning about refactoring, optimisation, et cetera.

Introduction

while a and b do

e;
end

while a do

f;
while a and b do

e;
end

end

while a do

if b then

e;
else

f;
end

end

?≡

S. Smolka, N. Foster, J. Hsu, T. Kappé, D. Kozen, A. Silva Guarded Kleene Algebra with Tests POPL 2020 1 17

• Uninterpreted programs can be thought of as skeletons of programs.

• The structure of the program is there, but not the concrete actions.

• This allows reasoning about refactoring, optimisation, et cetera.

Introduction

Contributions:

Nearly linear time decision procedure for equivalence.1

Axiomatization of uninterpreted program equivalence.

Kleene theorem for uninterpreted programs.

1For fixed number of tests.

S. Smolka, N. Foster, J. Hsu, T. Kappé, D. Kozen, A. Silva Guarded Kleene Algebra with Tests POPL 2020 2 17

Introduction

Contributions:

Nearly linear time decision procedure for equivalence.1

Axiomatization of uninterpreted program equivalence.

Kleene theorem for uninterpreted programs.

1For fixed number of tests.

S. Smolka, N. Foster, J. Hsu, T. Kappé, D. Kozen, A. Silva Guarded Kleene Algebra with Tests POPL 2020 2 17

Introduction

Contributions:

Nearly linear time decision procedure for equivalence.1

Axiomatization of uninterpreted program equivalence.

Kleene theorem for uninterpreted programs.

1For fixed number of tests.

S. Smolka, N. Foster, J. Hsu, T. Kappé, D. Kozen, A. Silva Guarded Kleene Algebra with Tests POPL 2020 2 17

Syntax and semantics

a,b ::= t ∈ T | a + b | ab | a | 0 | 1

e, f ::= a | p ∈ Σ | ef | e +a f | e(a)

S. Smolka, N. Foster, J. Hsu, T. Kappé, D. Kozen, A. Silva Guarded Kleene Algebra with Tests POPL 2020 3 17

• We will use compact syntax to denote uninterpreted programs.

• Note: overloading conjunction and concatenation.

Syntax and semantics

a,b ::= t ∈ T | a + b

a or b

| ab | a | 0 | 1

e, f ::= a | p ∈ Σ | ef | e +a f | e(a)

S. Smolka, N. Foster, J. Hsu, T. Kappé, D. Kozen, A. Silva Guarded Kleene Algebra with Tests POPL 2020 3 17

• We will use compact syntax to denote uninterpreted programs.

• Note: overloading conjunction and concatenation.

Syntax and semantics

a,b ::= t ∈ T | a + b | ab

a and b

| a | 0 | 1

e, f ::= a | p ∈ Σ | ef | e +a f | e(a)

S. Smolka, N. Foster, J. Hsu, T. Kappé, D. Kozen, A. Silva Guarded Kleene Algebra with Tests POPL 2020 3 17

• We will use compact syntax to denote uninterpreted programs.

• Note: overloading conjunction and concatenation.

Syntax and semantics

a,b ::= t ∈ T | a + b | ab | a

not a

| 0 | 1

e, f ::= a | p ∈ Σ | ef | e +a f | e(a)

S. Smolka, N. Foster, J. Hsu, T. Kappé, D. Kozen, A. Silva Guarded Kleene Algebra with Tests POPL 2020 3 17

• We will use compact syntax to denote uninterpreted programs.

• Note: overloading conjunction and concatenation.

Syntax and semantics

a,b ::= t ∈ T | a + b | ab | a | 0

false

| 1

e, f ::= a | p ∈ Σ | ef | e +a f | e(a)

S. Smolka, N. Foster, J. Hsu, T. Kappé, D. Kozen, A. Silva Guarded Kleene Algebra with Tests POPL 2020 3 17

• We will use compact syntax to denote uninterpreted programs.

• Note: overloading conjunction and concatenation.

Syntax and semantics

a,b ::= t ∈ T | a + b | ab | a | 0 | 1

true

e, f ::= a | p ∈ Σ | ef | e +a f | e(a)

S. Smolka, N. Foster, J. Hsu, T. Kappé, D. Kozen, A. Silva Guarded Kleene Algebra with Tests POPL 2020 3 17

• We will use compact syntax to denote uninterpreted programs.

• Note: overloading conjunction and concatenation.

Syntax and semantics

a,b ::= t ∈ T | a + b | ab | a | 0 | 1

e, f ::= a

assert a

| p ∈ Σ | ef | e +a f | e(a)

S. Smolka, N. Foster, J. Hsu, T. Kappé, D. Kozen, A. Silva Guarded Kleene Algebra with Tests POPL 2020 3 17

• We will use compact syntax to denote uninterpreted programs.

• Note: overloading conjunction and concatenation.

Syntax and semantics

a,b ::= t ∈ T | a + b | ab | a | 0 | 1

e, f ::= a | p ∈ Σ | ef

e; f

| e +a f | e(a)

S. Smolka, N. Foster, J. Hsu, T. Kappé, D. Kozen, A. Silva Guarded Kleene Algebra with Tests POPL 2020 3 17

• We will use compact syntax to denote uninterpreted programs.

• Note: overloading conjunction and concatenation.

Syntax and semantics

a,b ::= t ∈ T | a + b | ab | a | 0 | 1

e, f ::= a | p ∈ Σ | ef | e +a f

if a then e else f

| e(a)

S. Smolka, N. Foster, J. Hsu, T. Kappé, D. Kozen, A. Silva Guarded Kleene Algebra with Tests POPL 2020 3 17

• We will use compact syntax to denote uninterpreted programs.

• Note: overloading conjunction and concatenation.

Syntax and semantics

a,b ::= t ∈ T | a + b | ab | a | 0 | 1

e, f ::= a | p ∈ Σ | ef | e +a f | e(a)

while a do e

S. Smolka, N. Foster, J. Hsu, T. Kappé, D. Kozen, A. Silva Guarded Kleene Algebra with Tests POPL 2020 3 17

• We will use compact syntax to denote uninterpreted programs.

• Note: overloading conjunction and concatenation.

Syntax and semantics

while a do

if b then

e;
else

f;
end

end

while a and b do

e;
end

while a do

f;
while a and b do

e;
end

end

⇓

(e +b f)(a)

⇓

e(ab)(fe(ab))
(a)

S. Smolka, N. Foster, J. Hsu, T. Kappé, D. Kozen, A. Silva Guarded Kleene Algebra with Tests POPL 2020 4 17

• The programs from before can now be written down like this.

Syntax and semantics

i =
(

sat : T → 2States, eval : Σ→ 2States2
)

e RiJeK

t ∈ T {(s, s) : s ∈ sat(t)}

a + b RiJaK ∪ RiJbK
ab RiJaK ∩ RiJbK
a States2 \ RiJaK
p ∈ Σ eval(p)

e +a f RiJaK ◦ RiJeK ∪ RiJaK ◦ RiJfK
ef RiJeK ◦ RiJfK
e(a) (RiJaK ◦ RiJeK)∗ ◦ RiJaK

S. Smolka, N. Foster, J. Hsu, T. Kappé, D. Kozen, A. Silva Guarded Kleene Algebra with Tests POPL 2020 5 17

• We can instantiate tests and actions to obtain a relational semantics.

• We can use sub-Markov kernels to give a probabilistic semantics.

• Equivalence means semantics are the same regardless of interpretation.

Syntax and semantics

i =
(

sat : T → 2States, eval : Σ→ 2States2
)

e RiJeK

t ∈ T {(s, s) : s ∈ sat(t)}

a + b RiJaK ∪ RiJbK
ab RiJaK ∩ RiJbK
a States2 \ RiJaK
p ∈ Σ eval(p)

e +a f RiJaK ◦ RiJeK ∪ RiJaK ◦ RiJfK
ef RiJeK ◦ RiJfK
e(a) (RiJaK ◦ RiJeK)∗ ◦ RiJaK

S. Smolka, N. Foster, J. Hsu, T. Kappé, D. Kozen, A. Silva Guarded Kleene Algebra with Tests POPL 2020 5 17

• We can instantiate tests and actions to obtain a relational semantics.

• We can use sub-Markov kernels to give a probabilistic semantics.

• Equivalence means semantics are the same regardless of interpretation.

Syntax and semantics

Atoms = 2T

α ∈ Atoms

α ∈ GS(Σ,T)

α,β ∈ Atoms p ∈ Σ
αpβ ∈ GS(Σ,T)

wα,αx ∈ GS(Σ,T)

wαx ∈ GS(Σ,T)

L � K = {wαx : wα ∈ L,αx ∈ K } L(n) = L � · · · � L︸ ︷︷ ︸
n times

L(∗) =
⋃
n∈N

L(n)

S. Smolka, N. Foster, J. Hsu, T. Kappé, D. Kozen, A. Silva Guarded Kleene Algebra with Tests POPL 2020 6 17

• Parameterized semantics is intuitive, but not very easy to handle.

• We can abstract from the interpretation by giving a language semantics.

• The idea behind this semantics is that it gives all possible traces.

• A trace of a program consists of states interleaved with actions.

• Such traces are represented by guarded strings, defined as follows.

• Sets (languages) of guarded strings can be equipped with operators.

Syntax and semantics

Atoms = 2T

α ∈ Atoms

α ∈ GS(Σ,T)

α,β ∈ Atoms p ∈ Σ
αpβ ∈ GS(Σ,T)

wα,αx ∈ GS(Σ,T)

wαx ∈ GS(Σ,T)

L � K = {wαx : wα ∈ L,αx ∈ K } L(n) = L � · · · � L︸ ︷︷ ︸
n times

L(∗) =
⋃
n∈N

L(n)

S. Smolka, N. Foster, J. Hsu, T. Kappé, D. Kozen, A. Silva Guarded Kleene Algebra with Tests POPL 2020 6 17

• Parameterized semantics is intuitive, but not very easy to handle.

• We can abstract from the interpretation by giving a language semantics.

• The idea behind this semantics is that it gives all possible traces.

• A trace of a program consists of states interleaved with actions.

• Such traces are represented by guarded strings, defined as follows.

• Sets (languages) of guarded strings can be equipped with operators.

Syntax and semantics

Atoms = 2T

α ∈ Atoms

α ∈ GS(Σ,T)

α,β ∈ Atoms p ∈ Σ
αpβ ∈ GS(Σ,T)

wα,αx ∈ GS(Σ,T)

wαx ∈ GS(Σ,T)

L � K = {wαx : wα ∈ L,αx ∈ K } L(n) = L � · · · � L︸ ︷︷ ︸
n times

L(∗) =
⋃
n∈N

L(n)

S. Smolka, N. Foster, J. Hsu, T. Kappé, D. Kozen, A. Silva Guarded Kleene Algebra with Tests POPL 2020 6 17

• Parameterized semantics is intuitive, but not very easy to handle.

• We can abstract from the interpretation by giving a language semantics.

• The idea behind this semantics is that it gives all possible traces.

• A trace of a program consists of states interleaved with actions.

• Such traces are represented by guarded strings, defined as follows.

• Sets (languages) of guarded strings can be equipped with operators.

Syntax and semantics

e JeK

t ∈ T {α ∈ Atoms : t ∈ α}
a + b JaK ∪ JbK
ab JaK ∩ JbK
a Atoms \ JaK
p ∈ Σ {αpβ : α,β ∈ Atoms}

e +a f JaK � JeK ∪ JaK � JfK
ef JeK � JfK

e(a) (JaK � JeK)(∗) � JaK

S. Smolka, N. Foster, J. Hsu, T. Kappé, D. Kozen, A. Silva Guarded Kleene Algebra with Tests POPL 2020 7 17

• Semantics in terms of guarded strings given as follows.

• Semantics of a test is set of atoms (states) satisfying that test.

• Semantics of an action is an overapproximation — meaning is unknown.

• Inductive cases are as for the relational semantics.

• For example, trace of sequencing finds matching traces and fuses them.

Syntax and semantics

Theorem

JeK = JfK ⇐⇒ ∀i. RiJeK = RiJfK

How to check JeK = JfK:
1 Create automata that accept JeK and JfK.
2 Check automata for bisimilarity.

S. Smolka, N. Foster, J. Hsu, T. Kappé, D. Kozen, A. Silva Guarded Kleene Algebra with Tests POPL 2020 8 17

• Parameterized interpretations are related to interpretation in guarded strings.

• We can check equivalence for all interpretations by comparing languages.

• Spoiler: implement languages in automata, compare those automata.

• Note: the conversion from expressions to automata is half a Kleene theorem.

• Complexity of procedure is nearly linear in size of automata.

Syntax and semantics

Theorem

JeK = JfK ⇐⇒ ∀i. RiJeK = RiJfK

How to check JeK = JfK:
1 Create automata that accept JeK and JfK.
2 Check automata for bisimilarity.

S. Smolka, N. Foster, J. Hsu, T. Kappé, D. Kozen, A. Silva Guarded Kleene Algebra with Tests POPL 2020 8 17

• Parameterized interpretations are related to interpretation in guarded strings.

• We can check equivalence for all interpretations by comparing languages.

• Spoiler: implement languages in automata, compare those automata.

• Note: the conversion from expressions to automata is half a Kleene theorem.

• Complexity of procedure is nearly linear in size of automata.

Axiomatization

e +a e ≡ e

e +a f ≡ f +a e e +a f ≡ ae +a f aa ≡ 0 0e ≡ 0

Example

if a then e else assert false = e +a 0

≡ ae +a 0

≡ 0 +a ae

≡ 0e +a ae

≡ aae +a ae

≡ ae +a ae

≡ ae = assert a; e

S. Smolka, N. Foster, J. Hsu, T. Kappé, D. Kozen, A. Silva Guarded Kleene Algebra with Tests POPL 2020 9 17

• Branching between identical pieces of code can be eliminated.

• Branches can be flipped by negating the condition.

• The guard of a branch holds before the branch starts.

• Contradictory assertions are like asserting false.

• Asserting false means the rest of the code is not executed.

• With these axioms we can already derive some useful things.

Axiomatization

e +a e ≡ e e +a f ≡ f +a e

e +a f ≡ ae +a f aa ≡ 0 0e ≡ 0

Example

if a then e else assert false = e +a 0

≡ ae +a 0

≡ 0 +a ae

≡ 0e +a ae

≡ aae +a ae

≡ ae +a ae

≡ ae = assert a; e

S. Smolka, N. Foster, J. Hsu, T. Kappé, D. Kozen, A. Silva Guarded Kleene Algebra with Tests POPL 2020 9 17

• Branching between identical pieces of code can be eliminated.

• Branches can be flipped by negating the condition.

• The guard of a branch holds before the branch starts.

• Contradictory assertions are like asserting false.

• Asserting false means the rest of the code is not executed.

• With these axioms we can already derive some useful things.

Axiomatization

e +a e ≡ e e +a f ≡ f +a e e +a f ≡ ae +a f

aa ≡ 0 0e ≡ 0

Example

if a then e else assert false = e +a 0

≡ ae +a 0

≡ 0 +a ae

≡ 0e +a ae

≡ aae +a ae

≡ ae +a ae

≡ ae = assert a; e

S. Smolka, N. Foster, J. Hsu, T. Kappé, D. Kozen, A. Silva Guarded Kleene Algebra with Tests POPL 2020 9 17

• Branching between identical pieces of code can be eliminated.

• Branches can be flipped by negating the condition.

• The guard of a branch holds before the branch starts.

• Contradictory assertions are like asserting false.

• Asserting false means the rest of the code is not executed.

• With these axioms we can already derive some useful things.

Axiomatization

e +a e ≡ e e +a f ≡ f +a e e +a f ≡ ae +a f aa ≡ 0

0e ≡ 0

Example

if a then e else assert false = e +a 0

≡ ae +a 0

≡ 0 +a ae

≡ 0e +a ae

≡ aae +a ae

≡ ae +a ae

≡ ae = assert a; e

S. Smolka, N. Foster, J. Hsu, T. Kappé, D. Kozen, A. Silva Guarded Kleene Algebra with Tests POPL 2020 9 17

• Branching between identical pieces of code can be eliminated.

• Branches can be flipped by negating the condition.

• The guard of a branch holds before the branch starts.

• Contradictory assertions are like asserting false.

• Asserting false means the rest of the code is not executed.

• With these axioms we can already derive some useful things.

Axiomatization

e +a e ≡ e e +a f ≡ f +a e e +a f ≡ ae +a f aa ≡ 0 0e ≡ 0

Example

if a then e else assert false = e +a 0

≡ ae +a 0

≡ 0 +a ae

≡ 0e +a ae

≡ aae +a ae

≡ ae +a ae

≡ ae = assert a; e

S. Smolka, N. Foster, J. Hsu, T. Kappé, D. Kozen, A. Silva Guarded Kleene Algebra with Tests POPL 2020 9 17

• Branching between identical pieces of code can be eliminated.

• Branches can be flipped by negating the condition.

• The guard of a branch holds before the branch starts.

• Contradictory assertions are like asserting false.

• Asserting false means the rest of the code is not executed.

• With these axioms we can already derive some useful things.

Axiomatization

e +a e ≡ e e +a f ≡ f +a e e +a f ≡ ae +a f aa ≡ 0 0e ≡ 0

Example

if a then e else assert false = e +a 0

≡ ae +a 0

≡ 0 +a ae

≡ 0e +a ae

≡ aae +a ae

≡ ae +a ae

≡ ae = assert a; e

S. Smolka, N. Foster, J. Hsu, T. Kappé, D. Kozen, A. Silva Guarded Kleene Algebra with Tests POPL 2020 9 17

• Branching between identical pieces of code can be eliminated.

• Branches can be flipped by negating the condition.

• The guard of a branch holds before the branch starts.

• Contradictory assertions are like asserting false.

• Asserting false means the rest of the code is not executed.

• With these axioms we can already derive some useful things.

Axiomatization

e +a e ≡ e e +a f ≡ f +a e e +a f ≡ ae +a f aa ≡ 0 0e ≡ 0

Example

if a then e else assert false = e +a 0 ≡ ae +a 0

≡ 0 +a ae

≡ 0e +a ae

≡ aae +a ae

≡ ae +a ae

≡ ae = assert a; e

S. Smolka, N. Foster, J. Hsu, T. Kappé, D. Kozen, A. Silva Guarded Kleene Algebra with Tests POPL 2020 9 17

• Branching between identical pieces of code can be eliminated.

• Branches can be flipped by negating the condition.

• The guard of a branch holds before the branch starts.

• Contradictory assertions are like asserting false.

• Asserting false means the rest of the code is not executed.

• With these axioms we can already derive some useful things.

Axiomatization

e +a e ≡ e e +a f ≡ f +a e e +a f ≡ ae +a f aa ≡ 0 0e ≡ 0

Example

if a then e else assert false = e +a 0 ≡ ae +a 0

≡ 0 +a ae

≡ 0e +a ae

≡ aae +a ae

≡ ae +a ae

≡ ae = assert a; e

S. Smolka, N. Foster, J. Hsu, T. Kappé, D. Kozen, A. Silva Guarded Kleene Algebra with Tests POPL 2020 9 17

• Branching between identical pieces of code can be eliminated.

• Branches can be flipped by negating the condition.

• The guard of a branch holds before the branch starts.

• Contradictory assertions are like asserting false.

• Asserting false means the rest of the code is not executed.

• With these axioms we can already derive some useful things.

Axiomatization

e +a e ≡ e e +a f ≡ f +a e e +a f ≡ ae +a f aa ≡ 0 0e ≡ 0

Example

if a then e else assert false = e +a 0 ≡ ae +a 0

≡ 0 +a ae

≡ 0e +a ae

≡ aae +a ae

≡ ae +a ae

≡ ae = assert a; e

S. Smolka, N. Foster, J. Hsu, T. Kappé, D. Kozen, A. Silva Guarded Kleene Algebra with Tests POPL 2020 9 17

• Branching between identical pieces of code can be eliminated.

• Branches can be flipped by negating the condition.

• The guard of a branch holds before the branch starts.

• Contradictory assertions are like asserting false.

• Asserting false means the rest of the code is not executed.

• With these axioms we can already derive some useful things.

Axiomatization

e +a e ≡ e e +a f ≡ f +a e e +a f ≡ ae +a f aa ≡ 0 0e ≡ 0

Example

if a then e else assert false = e +a 0 ≡ ae +a 0

≡ 0 +a ae

≡ 0e +a ae

≡ aae +a ae

≡ ae +a ae

≡ ae = assert a; e

S. Smolka, N. Foster, J. Hsu, T. Kappé, D. Kozen, A. Silva Guarded Kleene Algebra with Tests POPL 2020 9 17

• Branching between identical pieces of code can be eliminated.

• Branches can be flipped by negating the condition.

• The guard of a branch holds before the branch starts.

• Contradictory assertions are like asserting false.

• Asserting false means the rest of the code is not executed.

• With these axioms we can already derive some useful things.

Axiomatization

e +a e ≡ e e +a f ≡ f +a e e +a f ≡ ae +a f aa ≡ 0 0e ≡ 0

Example

if a then e else assert false = e +a 0 ≡ ae +a 0

≡ 0 +a ae

≡ 0e +a ae

≡ aae +a ae

≡ ae +a ae

≡ ae = assert a; e

S. Smolka, N. Foster, J. Hsu, T. Kappé, D. Kozen, A. Silva Guarded Kleene Algebra with Tests POPL 2020 9 17

• Branching between identical pieces of code can be eliminated.

• Branches can be flipped by negating the condition.

• The guard of a branch holds before the branch starts.

• Contradictory assertions are like asserting false.

• Asserting false means the rest of the code is not executed.

• With these axioms we can already derive some useful things.

Axiomatization

e +a e ≡ e e +a f ≡ f +a e e +a f ≡ ae +a f aa ≡ 0 0e ≡ 0

Example

if a then e else assert false = e +a 0 ≡ ae +a 0

≡ 0 +a ae

≡ 0e +a ae

≡ aae +a ae

≡ ae +a ae

≡ ae = assert a; e

S. Smolka, N. Foster, J. Hsu, T. Kappé, D. Kozen, A. Silva Guarded Kleene Algebra with Tests POPL 2020 9 17

• Branching between identical pieces of code can be eliminated.

• Branches can be flipped by negating the condition.

• The guard of a branch holds before the branch starts.

• Contradictory assertions are like asserting false.

• Asserting false means the rest of the code is not executed.

• With these axioms we can already derive some useful things.

Axiomatization

e ≡ fe +a g

e ≡ f(a)g

Allows to derive 1 ≡ 1(1), i.e.,

while true do assert true ≡ assert true

S. Smolka, N. Foster, J. Hsu, T. Kappé, D. Kozen, A. Silva Guarded Kleene Algebra with Tests POPL 2020 10 17

• First intuition for loop axioms is to characterise it as a fixpoint.

• Need to be careful, otherwise we can prove nonsense.

Axiomatization

e ≡ fe +a g

e ≡ f(a)g

Allows to derive 1 ≡ 1(1), i.e.,

while true do assert true ≡ assert true

S. Smolka, N. Foster, J. Hsu, T. Kappé, D. Kozen, A. Silva Guarded Kleene Algebra with Tests POPL 2020 10 17

• First intuition for loop axioms is to characterise it as a fixpoint.

• Need to be careful, otherwise we can prove nonsense.

Axiomatization

e ≡ fe +a g f is productive

e ≡ f(a)g

e(a) ≡ eea +a 1 (e +a 1)(b) ≡ (ae)(b)

Lemma

For every e, there exists a productive ê such that e(b) ≡ ê(b).

Lemma

e(a) ≡ e(a)a e(a) ≡ (ae)(a) e(ab)e(b) ≡ e(b)

S. Smolka, N. Foster, J. Hsu, T. Kappé, D. Kozen, A. Silva Guarded Kleene Algebra with Tests POPL 2020 11 17

• Instead we need to put a side-condition on the loop body; see paper for details.

• Loops are themselves a fixpoint, and skips inside loops can be eliminated.

• We can make the body of any loop productive.

• With these axioms, we can now prove useful things about loops.

Axiomatization

e ≡ fe +a g f is productive

e ≡ f(a)g
e(a) ≡ eea +a 1

(e +a 1)(b) ≡ (ae)(b)

Lemma

For every e, there exists a productive ê such that e(b) ≡ ê(b).

Lemma

e(a) ≡ e(a)a e(a) ≡ (ae)(a) e(ab)e(b) ≡ e(b)

S. Smolka, N. Foster, J. Hsu, T. Kappé, D. Kozen, A. Silva Guarded Kleene Algebra with Tests POPL 2020 11 17

• Instead we need to put a side-condition on the loop body; see paper for details.

• Loops are themselves a fixpoint, and skips inside loops can be eliminated.

• We can make the body of any loop productive.

• With these axioms, we can now prove useful things about loops.

Axiomatization

e ≡ fe +a g f is productive

e ≡ f(a)g
e(a) ≡ eea +a 1 (e +a 1)(b) ≡ (ae)(b)

Lemma

For every e, there exists a productive ê such that e(b) ≡ ê(b).

Lemma

e(a) ≡ e(a)a e(a) ≡ (ae)(a) e(ab)e(b) ≡ e(b)

S. Smolka, N. Foster, J. Hsu, T. Kappé, D. Kozen, A. Silva Guarded Kleene Algebra with Tests POPL 2020 11 17

• Instead we need to put a side-condition on the loop body; see paper for details.

• Loops are themselves a fixpoint, and skips inside loops can be eliminated.

• We can make the body of any loop productive.

• With these axioms, we can now prove useful things about loops.

Axiomatization

e ≡ fe +a g f is productive

e ≡ f(a)g
e(a) ≡ eea +a 1 (e +a 1)(b) ≡ (ae)(b)

Lemma

For every e, there exists a productive ê such that e(b) ≡ ê(b).

Lemma

e(a) ≡ e(a)a e(a) ≡ (ae)(a) e(ab)e(b) ≡ e(b)

S. Smolka, N. Foster, J. Hsu, T. Kappé, D. Kozen, A. Silva Guarded Kleene Algebra with Tests POPL 2020 11 17

• Instead we need to put a side-condition on the loop body; see paper for details.

• Loops are themselves a fixpoint, and skips inside loops can be eliminated.

• We can make the body of any loop productive.

• With these axioms, we can now prove useful things about loops.

Axiomatization

e ≡ fe +a g f is productive

e ≡ f(a)g
e(a) ≡ eea +a 1 (e +a 1)(b) ≡ (ae)(b)

Lemma

For every e, there exists a productive ê such that e(b) ≡ ê(b).

Lemma

e(a) ≡ e(a)a e(a) ≡ (ae)(a) e(ab)e(b) ≡ e(b)

S. Smolka, N. Foster, J. Hsu, T. Kappé, D. Kozen, A. Silva Guarded Kleene Algebra with Tests POPL 2020 11 17

• Instead we need to put a side-condition on the loop body; see paper for details.

• Loops are themselves a fixpoint, and skips inside loops can be eliminated.

• We can make the body of any loop productive.

• With these axioms, we can now prove useful things about loops.

Axiomatization

Theorem (Soundness)

If e ≡ f, then JeK = JfK.

How about the converse?
1 A 7→ S(A) with e ≡ S(Ae).
2 If A ∼ A ′, then S(A) ≡ S(A ′).

JeK = JfK =⇒ L(Ae) = L(Af)

=⇒ Ae ∼ Af

=⇒ S(Ae) ≡ S(Af)

=⇒ e ≡ f

S. Smolka, N. Foster, J. Hsu, T. Kappé, D. Kozen, A. Silva Guarded Kleene Algebra with Tests POPL 2020 12 17

• The axioms (minus the naive fixpoint) are sound w.r.t. the semantics.

• We need two ingredients to show the converse, i.e., completeness:

– An automaton can be converted to an expression.
– NB: this is the second half of a Kleene theorem.
– The automaton of an expression yields an equivalent expression.
– Bisimilar automata have equivalent expressions.

• This is enough to conclude completeness, as follows.

• With some more axioms and a generalized fixpoint, we also have the converse.

Axiomatization

Theorem (Soundness)

If e ≡ f, then JeK = JfK.

How about the converse?
1 A 7→ S(A) with e ≡ S(Ae).
2 If A ∼ A ′, then S(A) ≡ S(A ′).

JeK = JfK =⇒ L(Ae) = L(Af)

=⇒ Ae ∼ Af

=⇒ S(Ae) ≡ S(Af)

=⇒ e ≡ f

S. Smolka, N. Foster, J. Hsu, T. Kappé, D. Kozen, A. Silva Guarded Kleene Algebra with Tests POPL 2020 12 17

• The axioms (minus the naive fixpoint) are sound w.r.t. the semantics.

• We need two ingredients to show the converse, i.e., completeness:

– An automaton can be converted to an expression.
– NB: this is the second half of a Kleene theorem.
– The automaton of an expression yields an equivalent expression.
– Bisimilar automata have equivalent expressions.

• This is enough to conclude completeness, as follows.

• With some more axioms and a generalized fixpoint, we also have the converse.

Axiomatization

Theorem (Soundness)

If e ≡ f, then JeK = JfK.

How about the converse?
1 A 7→ S(A) with e ≡ S(Ae).
2 If A ∼ A ′, then S(A) ≡ S(A ′).

JeK = JfK =⇒ L(Ae) = L(Af)

=⇒ Ae ∼ Af

=⇒ S(Ae) ≡ S(Af)

=⇒ e ≡ f

S. Smolka, N. Foster, J. Hsu, T. Kappé, D. Kozen, A. Silva Guarded Kleene Algebra with Tests POPL 2020 12 17

• The axioms (minus the naive fixpoint) are sound w.r.t. the semantics.

• We need two ingredients to show the converse, i.e., completeness:

– An automaton can be converted to an expression.
– NB: this is the second half of a Kleene theorem.
– The automaton of an expression yields an equivalent expression.
– Bisimilar automata have equivalent expressions.

• This is enough to conclude completeness, as follows.

• With some more axioms and a generalized fixpoint, we also have the converse.

A Kleene theorem

s1 s2
α

β/p

γ/q

βpγqα ∈ L(s1)

(X , δ : X → (2 + Σ× X)Atoms)

S. Smolka, N. Foster, J. Hsu, T. Kappé, D. Kozen, A. Silva Guarded Kleene Algebra with Tests POPL 2020 13 17

• A Kleene theorem is the powerhouse of our results.

• Some details about the automata and the conversion operators.

• Given an atom, either accept, reject or transition with an action.

• Word accepted is concatenation of labels, including acceptance.

A Kleene theorem

s1 s2
α

β/p

γ/q

βpγqα ∈ L(s1)

(X , δ : X → (2 + Σ× X)Atoms)

S. Smolka, N. Foster, J. Hsu, T. Kappé, D. Kozen, A. Silva Guarded Kleene Algebra with Tests POPL 2020 13 17

• A Kleene theorem is the powerhouse of our results.

• Some details about the automata and the conversion operators.

• Given an atom, either accept, reject or transition with an action.

• Word accepted is concatenation of labels, including acceptance.

A Kleene theorem

s1 s2
α

β/p

γ/q

βp

γqα ∈ L(s1)

(X , δ : X → (2 + Σ× X)Atoms)

S. Smolka, N. Foster, J. Hsu, T. Kappé, D. Kozen, A. Silva Guarded Kleene Algebra with Tests POPL 2020 13 17

• A Kleene theorem is the powerhouse of our results.

• Some details about the automata and the conversion operators.

• Given an atom, either accept, reject or transition with an action.

• Word accepted is concatenation of labels, including acceptance.

A Kleene theorem

s1 s2
α

β/p

γ/q

βpγq

α ∈ L(s1)

(X , δ : X → (2 + Σ× X)Atoms)

S. Smolka, N. Foster, J. Hsu, T. Kappé, D. Kozen, A. Silva Guarded Kleene Algebra with Tests POPL 2020 13 17

• A Kleene theorem is the powerhouse of our results.

• Some details about the automata and the conversion operators.

• Given an atom, either accept, reject or transition with an action.

• Word accepted is concatenation of labels, including acceptance.

A Kleene theorem

s1 s2
α

β/p

γ/q

βpγqα ∈ L(s1)

(X , δ : X → (2 + Σ× X)Atoms)

S. Smolka, N. Foster, J. Hsu, T. Kappé, D. Kozen, A. Silva Guarded Kleene Algebra with Tests POPL 2020 13 17

• A Kleene theorem is the powerhouse of our results.

• Some details about the automata and the conversion operators.

• Given an atom, either accept, reject or transition with an action.

• Word accepted is concatenation of labels, including acceptance.

A Kleene theorem

s1 s2
α

β/p

γ/q

βpγqα ∈ L(s1)

(X , δ : X → (2 + Σ× X)Atoms)

S. Smolka, N. Foster, J. Hsu, T. Kappé, D. Kozen, A. Silva Guarded Kleene Algebra with Tests POPL 2020 13 17

• A Kleene theorem is the powerhouse of our results.

• Some details about the automata and the conversion operators.

• Given an atom, either accept, reject or transition with an action.

• Word accepted is concatenation of labels, including acceptance.

A Kleene theorem

Xf Xg

ιf

α
/

p

β
/

q

γ

β

ιg

α
/

r β
/

s

η

α

ιe

α
/

p β
/s

γ,η

e = f +a g

Xf Xg

ιf

α
/

p

γ,η

β

ιg

β
/

r γ
/

s

η

α

ιe

α
/

p γ
/s

η

β
/r

e = fg

Xf

ιf

β
/

p

γ

β

α/q

ιe

β
/

p

α

β/p

e = f(a)

S. Smolka, N. Foster, J. Hsu, T. Kappé, D. Kozen, A. Silva Guarded Kleene Algebra with Tests POPL 2020 14 17

• Conversion of expression to automaton by induction on structure.

• Inductive cases are shown here.

– For branching, we juxtapose and make a new initial state based on the guard.
– For sequencing, we juxtapose and reroute accepting transitions on the left.
– For loops, we reroute accepting transitions that validate the guard to the initial state.

• This translation is linear in the size of e.

A Kleene theorem

Xf Xg

ιf

α
/

p

β
/

q

γ

β

ιg

α
/

r β
/

s

η

α

ιe
α
/

p β
/s

γ,η

e = f +a g

Xf Xg

ιf

α
/

p

γ,η

β

ιg

β
/

r γ
/

s

η

α

ιe

α
/

p γ
/s

η

β
/r

e = fg

Xf

ιf

β
/

p

γ

β

α/q

ιe

β
/

p

α

β/p

e = f(a)

S. Smolka, N. Foster, J. Hsu, T. Kappé, D. Kozen, A. Silva Guarded Kleene Algebra with Tests POPL 2020 14 17

• Conversion of expression to automaton by induction on structure.

• Inductive cases are shown here.

– For branching, we juxtapose and make a new initial state based on the guard.
– For sequencing, we juxtapose and reroute accepting transitions on the left.
– For loops, we reroute accepting transitions that validate the guard to the initial state.

• This translation is linear in the size of e.

A Kleene theorem

Xf Xg

ιf

α
/

p

β
/

q

γ

β

ιg

α
/

r β
/

s

η

α

ιe
α
/

p β
/s

γ,η

e = f +a g

Xf Xg

ιf

α
/

p

γ,η

β

ιg

β
/

r γ
/

s

η

α

ιe

α
/

p γ
/s

η

β
/r

e = fg

Xf

ιf

β
/

p

γ

β

α/q

ιe

β
/

p

α

β/p

e = f(a)

S. Smolka, N. Foster, J. Hsu, T. Kappé, D. Kozen, A. Silva Guarded Kleene Algebra with Tests POPL 2020 14 17

• Conversion of expression to automaton by induction on structure.

• Inductive cases are shown here.

– For branching, we juxtapose and make a new initial state based on the guard.
– For sequencing, we juxtapose and reroute accepting transitions on the left.
– For loops, we reroute accepting transitions that validate the guard to the initial state.

• This translation is linear in the size of e.

A Kleene theorem

Xf Xg

ιf

α
/

p

β
/

q

γ

β

ιg

α
/

r β
/

s

η

α

ιe
α
/

p β
/s

γ,η

e = f +a g

Xf Xg

ιf

α
/

p

γ,η

β

ιg

β
/

r γ
/

s

η

α

ιe

α
/

p γ
/s

η

β
/r

e = fg

Xf

ιf

β
/

p

γ

β

α/q

ιe

β
/

p

α

β/p

e = f(a)

S. Smolka, N. Foster, J. Hsu, T. Kappé, D. Kozen, A. Silva Guarded Kleene Algebra with Tests POPL 2020 14 17

• Conversion of expression to automaton by induction on structure.

• Inductive cases are shown here.

– For branching, we juxtapose and make a new initial state based on the guard.
– For sequencing, we juxtapose and reroute accepting transitions on the left.
– For loops, we reroute accepting transitions that validate the guard to the initial state.

• This translation is linear in the size of e.

A Kleene theorem

Xf Xg

ιf

α
/

p

β
/

q

γ

β

ιg

α
/

r β
/

s

η

α

ιe
α
/

p β
/s

γ,η

e = f +a g

Xf Xg

ιf

α
/

p

γ,η

β

ιg

β
/

r γ
/

s

η

α

ιe

α
/

p γ
/s

η

β
/r

e = fg

Xf

ιf

β
/

p

γ

β

α/q

ιe

β
/

p

α

β/p

e = f(a)

S. Smolka, N. Foster, J. Hsu, T. Kappé, D. Kozen, A. Silva Guarded Kleene Algebra with Tests POPL 2020 14 17

• Conversion of expression to automaton by induction on structure.

• Inductive cases are shown here.

– For branching, we juxtapose and make a new initial state based on the guard.
– For sequencing, we juxtapose and reroute accepting transitions on the left.
– For loops, we reroute accepting transitions that validate the guard to the initial state.

• This translation is linear in the size of e.

A Kleene theorem

Xf Xg

ιf

α
/

p

β
/

q

γ

β

ιg

α
/

r β
/

s

η

α

ιe
α
/

p β
/s

γ,η

e = f +a g

Xf Xg

ιf

α
/

p

γ,η

β

ιg

β
/

r γ
/

s

η

α

ιe

α
/

p γ
/s

η

β
/r

e = fg

Xf

ιf

β
/

p

γ

β

α/q

ιe

β
/

p

α

β/p

e = f(a)

S. Smolka, N. Foster, J. Hsu, T. Kappé, D. Kozen, A. Silva Guarded Kleene Algebra with Tests POPL 2020 14 17

• Conversion of expression to automaton by induction on structure.

• Inductive cases are shown here.

– For branching, we juxtapose and make a new initial state based on the guard.
– For sequencing, we juxtapose and reroute accepting transitions on the left.
– For loops, we reroute accepting transitions that validate the guard to the initial state.

• This translation is linear in the size of e.

A Kleene theorem

S. Smolka, N. Foster, J. Hsu, T. Kappé, D. Kozen, A. Silva Guarded Kleene Algebra with Tests POPL 2020 15 17

• Conversion of automaton back to expression requires structural restriction.

• This is because constructs like goto are absent from our language.

• Well-nested automata are inductively constructed to guarantee this structure.

• We can exploit this inductive structure to craft an expression.

A Kleene theorem

S. Smolka, N. Foster, J. Hsu, T. Kappé, D. Kozen, A. Silva Guarded Kleene Algebra with Tests POPL 2020 15 17

• Conversion of automaton back to expression requires structural restriction.

• This is because constructs like goto are absent from our language.

• Well-nested automata are inductively constructed to guarantee this structure.

• We can exploit this inductive structure to craft an expression.

A Kleene theorem

S. Smolka, N. Foster, J. Hsu, T. Kappé, D. Kozen, A. Silva Guarded Kleene Algebra with Tests POPL 2020 15 17

• Conversion of automaton back to expression requires structural restriction.

• This is because constructs like goto are absent from our language.

• Well-nested automata are inductively constructed to guarantee this structure.

• We can exploit this inductive structure to craft an expression.

A Kleene theorem

S. Smolka, N. Foster, J. Hsu, T. Kappé, D. Kozen, A. Silva Guarded Kleene Algebra with Tests POPL 2020 15 17

• Conversion of automaton back to expression requires structural restriction.

• This is because constructs like goto are absent from our language.

• Well-nested automata are inductively constructed to guarantee this structure.

• We can exploit this inductive structure to craft an expression.

A Kleene theorem

S. Smolka, N. Foster, J. Hsu, T. Kappé, D. Kozen, A. Silva Guarded Kleene Algebra with Tests POPL 2020 15 17

• Conversion of automaton back to expression requires structural restriction.

• This is because constructs like goto are absent from our language.

• Well-nested automata are inductively constructed to guarantee this structure.

• We can exploit this inductive structure to craft an expression.

A Kleene theorem

Theorem

Let L ⊆ (Σ ∪ Atoms)∗. The following are equivalent:

1 L = JeK for some e.

2 L is accepted by a well-nested and finite automaton.

S. Smolka, N. Foster, J. Hsu, T. Kappé, D. Kozen, A. Silva Guarded Kleene Algebra with Tests POPL 2020 16 17

• This conversion is correct: the automaton created accepts the same language.

• We can go the other way as well for well-structured automata.

• In fact, the automaton created from an expression is well-structured.

Further work

Coalgebraic perspective, coequations

Instantiation framework; hypotheses

Fully algebraic axiomatization

S. Smolka, N. Foster, J. Hsu, T. Kappé, D. Kozen, A. Silva Guarded Kleene Algebra with Tests POPL 2020 17 17

https://kap.pe/slides

https://arxiv.org/abs/1907.05920

https://kap.pe/slides
https://arxiv.org/abs/1907.05920

Bonus: non-well-nested automaton

From [Kozen and Tseng 2008]:

x1

x2

x0

α0 + α3 α1 + α3

α2 + α3

α1/p01

α
2 /p

02

α0/p10

α
2
/p

12α
1
/p

21

α
0 /p

20

S. Smolka, N. Foster, J. Hsu, T. Kappé, D. Kozen, A. Silva Guarded Kleene Algebra with Tests POPL 2020 19 17

	Introduction
	Syntax and semantics
	Axiomatization
	A Kleene theorem
	Further work
	Bonus: non-well-nested automaton

