Guarded Kleene Algebra with Tests

Verification of Uninterpreted Programs in Nearly Linear Time

Steffen Smolka ${ }^{1}$ Nate Foster ${ }^{1}$ Justin Hsu ${ }^{2}$
Tobias Kappé ${ }^{3}$ Dexter Kozen ${ }^{1}$ Alexandra Silva ${ }^{3}$
${ }^{1}$ Cornell University
${ }^{2}$ University of Wisconsin-Madison
${ }^{3}$ University College London

Introduction

- Uninterpreted programs can be thought of as skeletons of programs.
- The structure of the program is there, but not the concrete actions.
- This allows reasoning about refactoring, optimisation, et cetera.

```
while a and b do
    e;
end
while a do
    f;
    while a and b do
        e;
    end
end
```


Introduction

- Uninterpreted programs can be thought of as skeletons of programs.
- The structure of the program is there, but not the concrete actions.
- This allows reasoning about refactoring, optimisation, et cetera.

while a and b do	
-	while a do
end	if b then
while a do	- e;
f;	else
while a and b do	\| f;
e;	end
end	end

Introduction

- Uninterpreted programs can be thought of as skeletons of programs.
- The structure of the program is there, but not the concrete actions.
- This allows reasoning about refactoring, optimisation, et cetera.

．
－
reduction

Contributions：
 Nearly linear time decision procedure for equivalence．${ }^{1}$

Contributions： ${ }^{1}$ For fixed number of tests．
polka，N．Foster，J．Usu，T．Gape，D．Kozen，A．Silva mola，N．Foster，J．Hsu，T．．Rape，D．Kozen，A．Silva
\square
路
\square

\qquad
\square额

Introduction

Contributions:

- Nearly linear time decision procedure for equivalence.
- Axiomatization of uninterpreted program equivalence.

Introduction

Contributions:

- Nearly linear time decision procedure for equivalence. ${ }^{1}$
- Axiomatization of uninterpreted program equivalence.
- Kleene theorem for uninterpreted programs.

Syntax and semantics

- We will use compact syntax to denote uninterpreted programs.
- Note: overloading conjunction and concatenation.
$\mathbf{a}, \mathbf{b}::=t \in T|\mathbf{a}+\mathbf{b}| \mathbf{a b}|\overline{\mathbf{a}}| 0 \mid 1$

$$
\mathbf{e}, \mathbf{f}::=\mathbf{a}|p \in \Sigma| \mathbf{e f}|\mathbf{e}+\mathbf{a} \mathbf{f}| \mathbf{e}^{(\mathbf{a})}
$$

Syntax and semantics

- We will use compact syntax to denote uninterpreted programs.
- Note: overloading conjunction and concatenation.

$$
\begin{gathered}
\mathbf{a}, \mathbf{b}::=t \in T|\mathbf{a}+\mathbf{b}| \mathbf{a b}|\overline{\mathbf{a}}| 0 \mid 1 \\
\mathbf{a} \text { or } \mathbf{b} \\
\mathbf{e}, \mathbf{f}::=\mathbf{a}|p \in \Sigma| \text { ef }\left|\mathbf{e}+\mathrm{a}_{\mathrm{a}} \mathbf{f}\right| \mathbf{e}^{(\mathrm{a})}
\end{gathered}
$$

Syntax and semantics

- We will use compact syntax to denote uninterpreted programs.
- Note: overloading conjunction and concatenation.
$\mathbf{a}, \mathbf{b}::=t \in T|\mathbf{a}+\mathbf{b}| \mathbf{a b}|\overline{\mathbf{a}}| 0 \mid 1$
\mathbf{a} and \mathbf{b}
$\mathbf{e}, \mathbf{f}::=\mathbf{a}|p \in \Sigma|$ ef $\left|\mathbf{e}+{ }_{\mathbf{a}} \mathbf{f}\right| \mathbf{e}^{(\mathrm{a})}$

Syntax and semantics

- We will use compact syntax to denote uninterpreted programs.
- Note: overloading conjunction and concatenation.

$$
\begin{gathered}
\mathbf{a}, \mathrm{b}::=t \in T|\mathbf{a}+\mathbf{b}| \mathbf{a b}|\overline{\mathbf{a}}| 0 \mid 1 \\
\operatorname{not} \mathbf{a} \\
\mathbf{e}, \mathbf{f}::=\mathbf{a}|p \in \Sigma| \mathbf{e f}\left|\mathbf{e}+\mathrm{a}_{\mathrm{a}} \mathbf{f}\right| \mathbf{e}^{(\mathrm{a})}
\end{gathered}
$$

Syntax and semantics

- We will use compact syntax to denote uninterpreted programs.
- Note: overloading conjunction and concatenation.
$\mathbf{a}, \mathbf{b}::=t \in T|\mathbf{a}+\mathbf{b}| \mathbf{a b}|\overline{\mathbf{a}}| 0 \mid 1$
false
$\mathbf{e}, \mathbf{f}::=\mathbf{a}|p \in \Sigma|$ ef $\left|\mathbf{e}+{ }_{\mathrm{a}} \mathbf{f}\right| \mathbf{e}^{(\mathrm{a})}$

Syntax and semantics

- We will use compact syntax to denote uninterpreted programs.
- Note: overloading conjunction and concatenation.

$$
\begin{array}{r}
\mathbf{a}, \mathbf{b}::=t \in T|\mathbf{a}+\mathbf{b}| \mathbf{a b}|\overline{\mathbf{a}}| 0 \mid 1 \\
\text { true } \\
\mathbf{e}, \mathbf{f}::=\mathbf{a}|p \in \Sigma| \mathbf{e f}\left|\mathbf{e}+{ }_{\mathrm{a}} \mathbf{f}\right| \mathbf{e}^{(\mathbf{a})}
\end{array}
$$

Syntax and semantics

- We will use compact syntax to denote uninterpreted programs.

- Note: overloading conjunction and concatenation.
$\mathbf{a}, \mathbf{b}::=t \in T|\mathbf{a}+\mathbf{b}| \mathbf{a b}|\overline{\mathbf{a}}| 0 \mid 1$
$\mathbf{e}, \mathbf{f}::=\mathbf{a}|p \in \Sigma| \mathbf{e f}\left|\mathbf{e}+\mathbf{a}_{\mathrm{a}}\right| \mathbf{e}^{(\mathbf{a})}$
assert a

Syntax and semantics

- We will use compact syntax to denote uninterpreted programs.
- Note: overloading conjunction and concatenation.
$\mathbf{a}, \mathbf{b}::=t \in T|\mathbf{a}+\mathbf{b}| \mathbf{a b}|\overline{\mathbf{a}}| 0 \mid 1$
$\mathbf{e}, \mathbf{f}::=\mathbf{a}|p \in \Sigma| \mathbf{e f}|\mathbf{e}+\mathbf{a}| \mathbf{e}^{(\mathbf{a})}$
e; f

Syntax and semantics

- We will use compact syntax to denote uninterpreted programs.

- Note: overloading conjunction and concatenation.
$\mathbf{a}, \mathbf{b}::=t \in T|\mathbf{a}+\mathbf{b}| \mathbf{a b}|\overline{\mathbf{a}}| 0 \mid 1$
$\mathbf{e}, \mathbf{f}:=\mathbf{a}|p \in \Sigma|$ ef $|\mathbf{e}+\mathbf{a}| \mathbf{e}^{(\mathbf{a})}$
if a then e else \mathbf{f}

Syntax and semantics

- We will use compact syntax to denote uninterpreted programs.
- Note: overloading conjunction and concatenation.
$\mathbf{a}, \mathbf{b}::=t \in T|\mathbf{a}+\mathbf{b}| \mathbf{a b}|\overline{\mathbf{a}}| 0 \mid 1$

$$
\begin{array}{r}
\mathbf{e}, \mathbf{f}::=\mathbf{a}|p \in \Sigma| \text { ef } \mid \\
\mathbf{e}+\mathbf{a} \mathbf{f} \mid \mathbf{e}^{(\mathbf{a})} \\
\\
\quad \text { while } \mathbf{a} \text { do } \mathbf{e}
\end{array}
$$

Syntax and semantics

Syntax and semantics

$$
i=\left(\text { sat }: T \rightarrow 2^{\text {States }}, \text { eval }: \Sigma \rightarrow 2^{\text {States }^{2}}\right)
$$

- We can instantiate tests and actions to obtain a relational semantics.
- We can use sub-Markov kernels to give a probabilistic semantics.
- Equivalence means semantics are the same regardless of interpretation.

$$
\left.\begin{array}{ll}
i=\left(\text { sat }: T \rightarrow 2^{\text {States }}, \text { eval }: \Sigma \rightarrow 2^{\text {States }}\right.
\end{array}\right)
$$

- We can use sub-Markov kernels to give a probabilistic semantics.
- Equivalence means semantics are the same regardless of interpretation.
- Parameterized semantics is intuitive, but not very easy to handle.
- We can abstract from the interpretation by giving a language semantics.
- The idea behind this semantics is that it gives all possible traces.
- A trace of a program consists of states interleaved with actions.
- Such traces are represented by guarded strings, defined as follows.
- Sets (languages) of guarded strings can be equipped with operators.

Syntax and semantics

- Parameterized semantics is intuitive, but not very easy to handle.
- We can abstract from the interpretation by giving a language semantics.
- The idea behind this semantics is that it gives all possible traces.
- A trace of a program consists of states interleaved with actions.
- Such traces are represented by guarded strings, defined as follows.
- Sets (languages) of guarded strings can be equipped with operators.

Syntax and semantics

- Parameterized semantics is intuitive, but not very easy to handle.
- We can abstract from the interpretation by giving a language semantics.
- The idea behind this semantics is that it gives all possible traces.
- A trace of a program consists of states interleaved with actions.
- Such traces are represented by guarded strings, defined as follows.
- Sets (languages) of guarded strings can be equipped with operators.

Syntax and semantics

- Semantics in terms of guarded strings given as follows.
- Semantics of a test is set of atoms (states) satisfying that test.
- Semantics of an action is an overapproximation - meaning is unknown.
- Inductive cases are as for the relational semantics.
- For example, trace of sequencing finds matching traces and fuses them.

$t \in T$	$\{\alpha \in A t o m s: t \in \alpha\}$
$\mathbf{a}+\mathbf{b}$	$\llbracket \mathbf{a} \rrbracket \cup \llbracket \mathbf{b} \rrbracket$
$\mathbf{a b}$	$\llbracket \mathbf{a} \rrbracket \cap \llbracket \mathbf{b} \rrbracket$
$\overline{\mathbf{a}}$	Atoms $\backslash \llbracket \mathbf{a} \rrbracket$
$p \in \Sigma$	$\{\alpha p \beta: \alpha, \beta \in$ Atoms $\}$
$\mathbf{e}+\mathrm{a}_{\mathbf{a}} \mathbf{f}$	$\llbracket \mathbf{a} \rrbracket \diamond \llbracket \mathbf{e} \rrbracket \cup \llbracket \overline{\mathbf{a}} \rrbracket \diamond \llbracket \mathbf{f} \rrbracket$
$\mathbf{e f}$	$\llbracket \mathbf{e} \rrbracket \diamond \llbracket \mathbf{f} \rrbracket$
$\mathbf{e}^{(\mathbf{a})}$	$(\llbracket \mathbf{a} \rrbracket \diamond \llbracket \mathbf{e} \rrbracket)^{(*)} \diamond \llbracket \overline{\mathbf{a}} \rrbracket$

Syntax and semantics

Theorem

$$
\llbracket \mathrm{e} \rrbracket=\llbracket \mathrm{f} \rrbracket \Longleftrightarrow \forall i . \mathcal{R}_{i} \llbracket \mathrm{e} \rrbracket=\mathcal{R}_{i}[\llbracket \rrbracket
$$

- Parameterized interpretations are related to interpretation in guarded strings.
- We can check equivalence for all interpretations by comparing languages.
- Spoiler: implement languages in automata, compare those automata.
- Note: the conversion from expressions to automata is half a Kleene theorem.
- Complexity of procedure is nearly linear in size of automata.

Syntax and semantics

Theorem

$$
\llbracket \mathrm{e} \rrbracket=\llbracket \mathrm{f} \rrbracket \Longleftrightarrow \forall i . \mathcal{R}_{i} \llbracket \mathrm{e} \rrbracket=\mathcal{R}_{i}[\mathrm{f} \rrbracket
$$

How to check $\llbracket \mathrm{e} \rrbracket=\llbracket f \rrbracket$:

[1I Create automata that accept $\llbracket \mathrm{e} \rrbracket$ and $\llbracket \mathrm{f} \rrbracket$.

[2. Check automata for bisimilarity.

- Parameterized interpretations are related to interpretation in guarded strings.
- We can check equivalence for all interpretations by comparing languages.
- Spoiler: implement languages in automata, compare those automata.
- Note: the conversion from expressions to automata is half a Kleene theorem.
- Complexity of procedure is nearly linear in size of automata.

Axiomatization

$\mathbf{e}+{ }_{a} \mathbf{e} \equiv \mathbf{e}$

- Branching between identical pieces of code can be eliminated.
- Branches can be flipped by negating the condition.
- The guard of a branch holds before the branch starts.
- Contradictory assertions are like asserting false.
- Asserting false means the rest of the code is not executed.
- With these axioms we can already derive some useful things.

Axiomatization

$\mathbf{e}+{ }_{a} \mathbf{e} \equiv \mathbf{e} \quad \mathbf{e}+{ }_{a} \mathbf{f} \equiv \mathbf{f}+{ }_{\mathbf{a}} \mathbf{e}$

- Branching between identical pieces of code can be eliminated.
- Branches can be flipped by negating the condition.
- The guard of a branch holds before the branch starts.
- Contradictory assertions are like asserting false.
- Asserting false means the rest of the code is not executed.
- With these axioms we can already derive some useful things.

Axiomatization

$\mathbf{e}+{ }_{a} \mathbf{e} \equiv \mathbf{e} \quad \mathbf{e}+{ }_{\mathrm{a}} \mathbf{f} \equiv \mathbf{f}+{ }_{\mathrm{a}} \mathbf{e}$ $e+{ }_{a} f \equiv a e+{ }_{a} f$

- Branching between identical pieces of code can be eliminated.
- Branches can be flipped by negating the condition.
- The guard of a branch holds before the branch starts.
- Contradictory assertions are like asserting false
- Asserting false means the rest of the code is not executed.
- With these axioms we can already derive some useful things.

Axiomatization

$\mathbf{e}+{ }_{a} \mathbf{e} \equiv \mathbf{e} \quad \mathbf{e}+{ }_{\mathrm{a}} \mathbf{f} \equiv \mathbf{f}+{ }_{\mathrm{a}} \mathbf{e}$
$e+{ }_{a} f \equiv a e+{ }_{a} f$
$\overline{\mathrm{a}} \boldsymbol{a} \equiv 0$

- Branching between identical pieces of code can be eliminated.
- Branches can be flipped by negating the condition.
- The guard of a branch holds before the branch starts.
- Contradictory assertions are like asserting false
- Asserting false means the rest of the code is not executed.
- With these axioms we can already derive some useful things.

Axiomatization

$\mathbf{e}+{ }_{a} \mathbf{e} \equiv \mathbf{e} \quad \mathbf{e}+{ }_{\mathrm{a}} \mathbf{f} \equiv \mathbf{f}+{ }_{\mathrm{a}} \mathbf{e}$
$e+{ }_{a} f \equiv a e+{ }_{a} f$
$\overline{\mathrm{a}} \boldsymbol{a} \equiv 0$
$0 \mathrm{e} \equiv 0$

- Branching between identical pieces of code can be eliminated.
- Branches can be flipped by negating the condition.
- The guard of a branch holds before the branch starts.
- Contradictory assertions are like asserting false.
- Asserting false means the rest of the code is not executed.
- With these axioms we can already derive some useful things.

Axiomatization

$\mathbf{e}+{ }_{a} \mathbf{e} \equiv \mathbf{e}$
$\mathbf{e}+{ }_{a} \mathbf{f} \equiv \mathbf{f}+{ }_{a} \mathbf{e}$
$e+{ }_{a} \mathbf{f} \equiv a e+{ }_{a} f$
$\overline{\mathrm{a}} \mathbf{a} \equiv 0$
$0 \mathrm{e} \equiv 0$

Example

if \mathbf{a} then \mathbf{e} else assert false $=\mathbf{e}+\mathbf{a} 0$

- Branching between identical pieces of code can be eliminated.
- Branches can be flipped by negating the condition.
- The guard of a branch holds before the branch starts.
- Contradictory assertions are like asserting false.
- Asserting false means the rest of the code is not executed.
- With these axioms we can already derive some useful things.

Axiomatization

$\mathbf{e}+{ }_{a} \mathbf{e} \equiv \mathbf{e}$
$\mathbf{e}+\mathbf{a} \equiv \mathbf{f}+{ }_{\mathbf{a}} \mathbf{e}$
$e+a f \equiv a e+a f$
$\overline{\mathrm{a}} \mathbf{a} \equiv 0$
$0 \mathrm{e} \equiv 0$

Example

if \mathbf{a} then \mathbf{e} else assert false $=\mathbf{e}+\mathrm{a} 0 \equiv \mathbf{a e}+\mathrm{a} 0$

- Branching between identical pieces of code can be eliminated.
- Branches can be flipped by negating the condition.
- The guard of a branch holds before the branch starts.
- Contradictory assertions are like asserting false.
- Asserting false means the rest of the code is not executed.
- With these axioms we can already derive some useful things.

Axiomatization

$\mathbf{e}+{ }_{a} \mathbf{e} \equiv \mathbf{e}$
$\mathbf{e}+\mathbf{a} \mathbf{f} \mathbf{f}+\mathbf{a} \mathbf{e}$
$e+{ }_{a} \mathbf{f} \equiv a e+{ }_{a} f$
$\overline{\mathrm{a}} \mathbf{a} \equiv 0$
$0 \mathbf{e} \equiv 0$

Example

if a then e else assert false $=\mathbf{e}+{ }_{a} 0 \equiv \mathbf{a e}+{ }_{a} 0$

$$
\equiv 0+\overline{\mathrm{a}} \mathrm{ae}
$$

- Branching between identical pieces of code can be eliminated.
- Branches can be flipped by negating the condition.
- The guard of a branch holds before the branch starts.
- Contradictory assertions are like asserting false.
- Asserting false means the rest of the code is not executed.
- With these axioms we can already derive some useful things.

Axiomatization

$\mathbf{e}+{ }_{a} \mathbf{e} \equiv \mathbf{e}$
$\mathbf{e}+\mathbf{a} \equiv \mathbf{f}+{ }_{\mathbf{a}} \mathbf{e}$
$e+{ }_{a} \mathbf{f} \equiv a e+{ }_{a} f$
$\overline{\mathrm{a}} \mathbf{a} \equiv 0$
$0 \mathbf{e} \equiv 0$

Example

$$
\text { if a then e else assert false } \begin{aligned}
\mathbf{e}+{ }_{\mathrm{a}} 0 & \equiv \mathbf{a e}+{ }_{\mathbf{a}} 0 \\
& \equiv 0+_{\mathrm{a}} \mathbf{a e} \\
& \equiv 0 \mathbf{e}+\overline{\mathrm{a}} \mathbf{a e}
\end{aligned}
$$

- Branching between identical pieces of code can be eliminated.
- Branches can be flipped by negating the condition.
- The guard of a branch holds before the branch starts.
- Contradictory assertions are like asserting false.
- Asserting false means the rest of the code is not executed.
- With these axioms we can already derive some useful things.

Axiomatization

$\mathbf{e}+{ }_{a} \mathbf{e} \equiv \mathbf{e}$
$\mathbf{e}+\mathbf{a} \equiv \mathbf{f}+{ }_{\mathbf{a}} \mathbf{e}$
$e+a f \equiv a e+a f$
$\overline{\mathrm{a}} \mathrm{a} \equiv 0$
$0 \mathbf{e} \equiv 0$

Example

if a then e else assert false $=\mathbf{e}+\mathbf{a} 0 \equiv \mathbf{a e}+{ }_{\mathrm{a}} 0$

$$
\begin{aligned}
& \equiv 0+_{\mathrm{a}} \text { ae } \\
& \equiv 0 \mathrm{e}+_{\overline{\mathrm{a}}} \mathrm{ae} \\
& \equiv \overline{\mathrm{a}} \mathrm{ae}+_{\overline{\mathrm{a}}} \mathrm{ae}
\end{aligned}
$$

- Branching between identical pieces of code can be eliminated.
- Branches can be flipped by negating the condition.
- The guard of a branch holds before the branch starts.
- Contradictory assertions are like asserting false.
- Asserting false means the rest of the code is not executed.
- With these axioms we can already derive some useful things.

Axiomatization

$\mathbf{e}+{ }_{a} \mathbf{e} \equiv \mathbf{e}$
$\mathbf{e}+\mathbf{a} \equiv \mathbf{f}+{ }_{\mathbf{a}} \mathbf{e}$
$e+a f \equiv a e+a f$
$\overline{\mathrm{a}} \mathbf{a} \equiv 0$
$0 \mathbf{e} \equiv 0$

Example

$$
\begin{aligned}
\text { if a then e else assert false }=\mathbf{e}+{ }_{\mathrm{a}} 0 & \equiv \mathbf{a e}+{ }_{\mathbf{a}} 0 \\
& \equiv 0+{ }_{\overline{\mathrm{a}}} \text { ae } \\
& \equiv 0 \mathbf{e}+\overline{\mathrm{a}} \mathbf{a e} \\
& \equiv \overline{\mathbf{a}} \mathbf{a e}+{ }_{\overline{\mathrm{a}}} \mathbf{a e} \\
& \equiv \mathbf{a e}+{ }_{\overline{\mathrm{a}}} \mathbf{a e}
\end{aligned}
$$

- Branches can be flipped by negating the condition.
- The guard of a branch holds before the branch starts.
- Contradictory assertions are like asserting false.
- Asserting false means the rest of the code is not executed.
- With these axioms we can already derive some useful things.

Axiomatization

$\mathbf{e}+\mathrm{a} \mathbf{e} \equiv \mathbf{e}$
$\mathbf{e}+\mathrm{a} \boldsymbol{f} \equiv \mathbf{f}+\overline{\mathrm{a}} \mathbf{e}$
$e+{ }_{a} f \equiv a e+{ }_{a} f$
$\overline{\mathrm{a}} \mathrm{a} \equiv 0$
$0 \mathrm{e} \equiv 0$

Example

if \mathbf{a} then \mathbf{e} else assert false $=\mathbf{e}+\mathbf{a} 0 \equiv \mathbf{a e}+\mathrm{a} 0$

$$
\begin{aligned}
& \equiv 0+_{\overline{\mathrm{a}}} \mathrm{ae} \\
& \equiv 0 \mathrm{e}+{ }_{\mathrm{a}} \mathrm{ae} \\
& \equiv \overline{\mathrm{a}} \mathrm{ae}+{ }_{\overline{\mathrm{a}}} \mathrm{ae} \\
& \equiv \mathrm{ae}+_{\mathrm{a}} \text { ae } \\
& \equiv \text { ae }
\end{aligned}
$$

- Branching between identical pieces of code can be eliminated.
- Branches can be flipped by negating the condition.
- The guard of a branch holds before the branch starts.
- Contradictory assertions are like asserting false.
- Asserting false means the rest of the code is not executed.
- With these axioms we can already derive some useful things.
- First intuition for loop axioms is to characterise it as a fixpoint.
- Need to be careful, otherwise we can prove nonsense.

$$
\frac{e \equiv f e+a g}{e \equiv f^{(a)} g}
$$

Axiomatization

$$
\frac{e \equiv f e+a g}{e \equiv f^{(a)} g}
$$

Allows to derive $1 \equiv 1^{(1)}$, i.e.,

while true do assert true \equiv assert true

- Need to be careful, otherwise we can prove nonsense.

Axiomatization

$\mathrm{e} \equiv \mathrm{fe}+\mathrm{ag} \quad \mathrm{f}$ is productive $e \equiv f^{(a)} \mathbf{g}$

- Instead we need to put a side-condition on the loop body; see paper for details.
- Loops are themselves a fixpoint, and skips inside loops can be eliminated.
- We can make the body of any loop productive.
- With these axioms, we can now prove useful things about loops.

Axiomatization

$$
\frac{\mathbf{e} \equiv f e+a g \quad f \text { is productive }}{e \equiv f^{(a)} g} \quad e^{(a)} \equiv e e^{a}+{ }_{a} 1
$$

- Instead we need to put a side-condition on the loop body; see paper for details.
- Loops are themselves a fixpoint, and skips inside loops can be eliminated.
- We can make the body of any loop productive.
- With these axioms, we can now prove useful things about loops.

Axiomatization

$\underline{e \equiv f e+a g \quad f \text { is productive }}$ $e \equiv f^{(a)} \mathbf{g}$

$$
\mathbf{e}^{(a)} \equiv e^{a}+{ }^{a} 1
$$

$$
(\mathbf{e}+\mathbf{a} 1)^{(\mathbf{b})} \equiv(\mathbf{a})^{(\mathbf{b})}
$$

- Instead we need to put a side-condition on the loop body; see paper for details.
- Loops are themselves a fixpoint, and skips inside loops can be eliminated.
- We can make the body of any loop productive.
- With these axioms, we can now prove useful things about loops.

Axiomatization

$\underline{e \equiv f e+a g \quad f \text { is productive }}$

$$
\mathbf{e}^{(a)} \equiv \mathbf{e e}^{a}+{ }_{a} 1 \quad\left(e+{ }_{a} 1\right)^{(b)} \equiv(\mathbf{a e})^{(b)}
$$

- Instead we need to put a side-condition on the loop body; see paper for details.
- Loops are themselves a fixpoint, and skips inside loops can be eliminated.
- We can make the body of any loop productive.
- With these axioms, we can now prove useful things about loops.

Lemma

For every e, there exists a productive ê such that $\mathbf{e}^{(\mathbf{b})} \equiv \hat{\mathbf{e}}^{(\mathbf{b})}$

Axiomatization

$$
\mathrm{e} \equiv \mathrm{fe}++_{\mathrm{a}} \mathrm{~g} \quad \mathrm{f} \text { is productive }
$$

$$
\mathbf{e}^{(a)} \equiv e^{a}+{ }_{a} 1 \quad\left(e+{ }_{a} 1\right)^{(b)} \equiv(\mathbf{a e})^{(b)}
$$

- Instead we need to put a side-condition on the loop body; see paper for details.
- Loops are themselves a fixpoint, and skips inside loops can be eliminated.
- We can make the body of any loop productive.

Lemma
For every e, there exists a productive ê such that $\mathbf{e}^{(\mathbf{b})} \equiv \hat{\mathbf{e}}^{(\mathbf{b})}$

Lemma

$$
\mathbf{e}^{(a)} \equiv \mathbf{e}^{(a)} \overline{\mathbf{a}} \quad \mathbf{e}^{(a)} \equiv(\mathbf{a e})^{(a)} \quad \mathbf{e}^{(a b)} \mathbf{e}^{(\mathrm{b})} \equiv \mathbf{e}^{(\mathrm{b})}
$$

Axiomatization

Theorem (Soundness)

If $\mathrm{e} \equiv \mathrm{f}$, then $\llbracket \mathrm{e} \rrbracket=\llbracket \mathrm{f} \rrbracket$.

- The axioms (minus the naive fixpoint) are sound w.r.t. the semantics.
- We need two ingredients to show the converse, i.e., completeness:
- An automaton can be converted to an expression.
- NB: this is the second half of a Kleene theorem.
- The automaton of an expression yields an equivalent expression.
- Bisimilar automata have equivalent expressions.
- This is enough to conclude completeness, as follows.
- With some more axioms and a generalized fixpoint, we also have the converse.

Axiomatization

Theorem (Soundness)

If $\mathrm{e} \equiv \mathrm{f}$, then $\llbracket \mathrm{e} \rrbracket=\llbracket \mathrm{f} \rrbracket$.
How about the converse?
11 $A \mapsto S(A)$ with $\mathrm{e} \equiv S\left(A_{\mathrm{e}}\right)$.
[2. If $A \sim A^{\prime}$, then $S(A) \equiv S\left(A^{\prime}\right)$.

- The axioms (minus the naive fixpoint) are sound w.r.t. the semantics.
- We need two ingredients to show the converse, i.e., completeness:
- An automaton can be converted to an expression.
- NB: this is the second half of a Kleene theorem.
- The automaton of an expression yields an equivalent expression.
- Bisimilar automata have equivalent expressions.
- This is enough to conclude completeness, as follows.
- With some more axioms and a generalized fixpoint, we also have the converse.

Axiomatization

Theorem (Soundness)

$$
\text { Ife } \equiv \mathrm{f} \text {, then } \llbracket \mathrm{e} \rrbracket=\llbracket \mathrm{f} \rrbracket \text {. }
$$

How about the converse?

11 $A \mapsto S(A)$ with $\mathrm{e} \equiv S\left(A_{\mathrm{e}}\right)$.
2. If $A \sim A^{\prime}$, then $S(A) \equiv S\left(A^{\prime}\right)$.

$$
\begin{aligned}
\llbracket \mathbb{e} \rrbracket=\llbracket \mathfrak{f} \rrbracket & \Longrightarrow L\left(A_{\mathrm{e}}\right)=L\left(A_{\mathrm{f}}\right) \\
& \Longrightarrow A_{\mathrm{e}} \sim A_{\mathrm{f}} \\
& \Longrightarrow S\left(A_{\mathrm{e}}\right) \equiv S\left(A_{\mathrm{f}}\right) \\
& \Longrightarrow \mathrm{e} \equiv \mathrm{f}
\end{aligned}
$$

- The axioms (minus the naive fixpoint) are sound w.r.t. the semantics.
- We need two ingredients to show the converse, i.e., completeness:
- An automaton can be converted to an expression.
- NB: this is the second half of a Kleene theorem.
- The automaton of an expression yields an equivalent expression.
- Bisimilar automata have equivalent expressions.
- This is enough to conclude completeness, as follows.
- With some more axioms and a generalized fixpoint, we also have the converse.

A Kleene theorem

- A Kleene theorem is the powerhouse of our results.
- Some details about the automata and the conversion operators.
- Given an atom, either accept, reject or transition with an action.
- Word accepted is concatenation of labels, including acceptance.

A Kleene theorem

- A Kleene theorem is the powerhouse of our results.
- Some details about the automata and the conversion operators.
- Given an atom, either accept, reject or transition with an action.
- Word accepted is concatenation of labels, including acceptance.

A Kleene theorem

- A Kleene theorem is the powerhouse of our results.
- Some details about the automata and the conversion operators.
- Given an atom, either accept, reject or transition with an action.
- Word accepted is concatenation of labels, including acceptance.

A Kleene theorem

- A Kleene theorem is the powerhouse of our results.
- Some details about the automata and the conversion operators.
- Given an atom, either accept, reject or transition with an action.
- Word accepted is concatenation of labels, including acceptance.
$\beta p \gamma q$

A Kleene theorem

- A Kleene theorem is the powerhouse of our results.
- Some details about the automata and the conversion operators.
- Given an atom, either accept, reject or transition with an action.
- Word accepted is concatenation of labels, including acceptance.
$\beta p \gamma q \alpha \in \mathcal{L}\left(s_{1}\right)$

A Kleene theorem

- A Kleene theorem is the powerhouse of our results.
- Some details about the automata and the conversion operators.
- Given an atom, either accept, reject or transition with an action.
- Word accepted is concatenation of labels, including acceptance.

$\beta p \gamma q \alpha \in \mathcal{L}\left(s_{1}\right)$

$$
\left(X, \delta: X \rightarrow(2+\Sigma \times X)^{A t o m s}\right)
$$

A Kleene theorem

- Conversion of expression to automaton by induction on structure.
- Inductive cases are shown here.
- For branching, we juxtapose and make a new initial state based on the guard.
- For sequencing, we juxtapose and reroute accepting transitions on the left.
- For loops, we reroute accepting transitions that validate the guard to the initial state.

- This translation is linear in the size of e.

A Kleene theorem

- Conversion of expression to automaton by induction on structure.
- Inductive cases are shown here.
- For branching, we juxtapose and make a new initial state based on the guard.
- For sequencing, we juxtapose and reroute accepting transitions on the left.
- For loops, we reroute accepting transitions that validate the guard to the initial state.
- This translation is linear in the size of e.

A Kleene theorem

- Conversion of expression to automaton by induction on structure.
- Inductive cases are shown here.
- For branching, we juxtapose and make a new initial state based on the guard
- For sequencing, we juxtapose and reroute accepting transitions on the left.
- For loops, we reroute accepting transitions that validate the guard to the initial state.
- This translation is linear in the size of \mathbf{e}.

A Kleene theorem

- Conversion of expression to automaton by induction on structure.
- Inductive cases are shown here.
- For branching, we juxtapose and make a new initial state based on the guard
- For sequencing, we juxtapose and reroute accepting transitions on the left.
- For loops, we reroute accepting transitions that validate the guard to the initial state.
- This translation is linear in the size of \mathbf{e}.

A Kleene theorem

- Conversion of expression to automaton by induction on structure.
- Inductive cases are shown here.
- For branching, we juxtapose and make a new initial state based on the guard
- For sequencing, we juxtapose and reroute accepting transitions on the left.
- For loops, we reroute accepting transitions that validate the guard to the initial state.
- This translation is linear in the size of \mathbf{e}.

A Kleene theorem

- Conversion of expression to automaton by induction on structure.
- Inductive cases are shown here.
- For branching, we juxtapose and make a new initial state based on the guard
- For sequencing, we juxtapose and reroute accepting transitions on the left.
- For loops, we reroute accepting transitions that validate the guard to the initial state.
- This translation is linear in the size of \mathbf{e}.

A Kleene theorem

- Conversion of automaton back to expression requires structural restriction.
- This is because constructs like goto are absent from our language.
- Well-nested automata are inductively constructed to guarantee this structure
- We can exploit this inductive structure to craft an expression.

A Kleene theorem

- Conversion of automaton back to expression requires structural restriction.
- This is because constructs like goto are absent from our language.
- Well-nested automata are inductively constructed to guarantee this structure.
- We can exploit this inductive structure to craft an expression.

A Kleene theorem

- Conversion of automaton back to expression requires structural restriction.
- This is because constructs like goto are absent from our language.
- Well-nested automata are inductively constructed to guarantee this structure.
- We can exploit this inductive structure to craft an expression.

A Kleene theorem

- Conversion of automaton back to expression requires structural restriction.
- This is because constructs like goto are absent from our language.
- Well-nested automata are inductively constructed to guarantee this structure
- We can exploit this inductive structure to craft an expression.

A Kleene theorem

- Conversion of automaton back to expression requires structural restriction.
- This is because constructs like goto are absent from our language.
- Well-nested automata are inductively constructed to guarantee this structure
- We can exploit this inductive structure to craft an expression.

A Kleene theorem

Theorem

Let $L \subseteq(\Sigma \cup \text { Atoms })^{*}$. The following are equivalent:
II $L=\llbracket \mathrm{e} \rrbracket$ for some e .
$2 L$ is accepted by a well-nested and finite automaton.

- This conversion is correct: the automaton created accepts the same language.
- We can go the other way as well for well-structured automata.
- In fact, the automaton created from an expression is well-structured

Further work

- Coalgebraic perspective, coequations

- Instantiation framework; hypotheses
- Fully algebraic axiomatization
https://kap.pe/slides
https://arxiv.org/abs/1907. 05920

Bonus: non-well-nested automaton

From [Kozen and Tseng 2008]:

