Guarded Kleene Algebra with Tests Coequations, Coinduction, and Completeness

Tobias Kappé

Institute for Logic, Language and Computation, University of Amsterdam

CS Seminar, Royal Holloway, University of London — October 27, 2021

Joint work with ...

Todd Schmid (UCL, Nijmegen)

Dexter Kozen (Cornell)

Alexandra Silva (Cornell, UCL)

Motivation: comparing programs

Motivation: comparing programs

A more complicated equivalence

Research questions

- What is the minimal set of axioms?
- Are those axioms sound and complete for a model?
- Can we decide axiomatic equivalence?

$$\mathbf{a},\mathbf{b}::=t\in \mathcal{T}\mid \mathbf{a}+\mathbf{b}\mid \mathbf{ab}\mid \overline{\mathbf{a}}\mid 0\mid 1$$

$$\mathbf{e}, \mathbf{f} ::= \mathbf{a} \mid \mathbf{p} \in \Sigma \mid \mathbf{ef} \mid \mathbf{e} +_{\mathbf{a}} \mathbf{f} \mid \mathbf{e}^{(\mathbf{a})}$$

Treat while-programs as expressions — c.f. (Kozen and Tseng 2008).

$$\mathbf{a},\mathbf{b}::=t\in\mathcal{T}\mid\mathbf{a}+\mathbf{b}\mid\mathbf{ab}\mid\overline{\mathbf{a}}\mid\mathbf{0}\mid\mathbf{1}$$
 \mathbf{a} or \mathbf{b}

 $\mathbf{e}, \mathbf{f} ::= \mathbf{a} \mid \mathbf{p} \in \Sigma \mid \mathbf{ef} \mid \mathbf{e} +_{\mathbf{a}} \mathbf{f} \mid \mathbf{e}^{(\mathbf{a})}$

Treat while-programs as expressions — c.f. (Kozen and Tseng 2008).

$$\mathbf{a}, \mathbf{b} ::= t \in T \mid \mathbf{a} + \mathbf{b} \mid \mathbf{ab} \mid \overline{\mathbf{a}} \mid \mathbf{0} \mid \mathbf{1}$$
$$\mathbf{a} \text{ and } \mathbf{b}$$

 $\mathbf{e}, \mathbf{f} ::= \mathbf{a} \mid p \in \Sigma \mid \mathbf{ef} \mid \mathbf{e} +_{\mathbf{a}} \mathbf{f} \mid \mathbf{e}^{(\mathbf{a})}$

Treat while-programs as expressions — c.f. (Kozen and Tseng 2008).

$$\mathbf{a},\mathbf{b}::=t\in \mathcal{T}\mid \mathbf{a}+\mathbf{b}\mid \mathbf{ab}\mid \overline{\mathbf{a}}\mid 0\mid 1$$
not a

 $\mathbf{e}, \mathbf{f} ::= \mathbf{a} \mid \mathbf{p} \in \Sigma \mid \mathbf{ef} \mid \mathbf{e} +_{\mathbf{a}} \mathbf{f} \mid \mathbf{e}^{(\mathbf{a})}$

Treat while-programs as expressions — c.f. (Kozen and Tseng 2008).

$$\mathbf{a}, \mathbf{b} ::= t \in \mathcal{T} \mid \mathbf{a} + \mathbf{b} \mid \mathbf{ab} \mid \overline{\mathbf{a}} \mid \mathbf{0} \mid \mathbf{1}$$
false

 $\mathbf{e}, \mathbf{f} ::= \mathbf{a} \mid \mathbf{p} \in \Sigma \mid \mathbf{ef} \mid \mathbf{e} +_{\mathbf{a}} \mathbf{f} \mid \mathbf{e}^{(\mathbf{a})}$

Treat while-programs as expressions — c.f. (Kozen and Tseng 2008).

$$\mathbf{a},\mathbf{b} ::= t \in \mathcal{T} \mid \mathbf{a} + \mathbf{b} \mid \mathbf{ab} \mid \overline{\mathbf{a}} \mid \mathbf{0} \mid \mathbf{1}$$
true

 $\mathbf{e}, \mathbf{f} ::= \mathbf{a} \mid p \in \Sigma \mid \mathbf{ef} \mid \mathbf{e} +_{\mathbf{a}} \mathbf{f} \mid \mathbf{e}^{(\mathbf{a})}$

$$\mathbf{a}, \mathbf{b} ::= t \in T \mid \mathbf{a} + \mathbf{b} \mid \mathbf{ab} \mid \overline{\mathbf{a}} \mid \mathbf{0} \mid \mathbf{1}$$

$$\mathbf{e}, \mathbf{f} ::= \mathbf{a} \mid p \in \Sigma \mid \mathbf{ef} \mid \mathbf{e} +_{\mathbf{a}} \mathbf{f} \mid \mathbf{e}^{(\mathbf{a})}$$

assert a

$$\mathbf{a},\mathbf{b}::=t\in \mathcal{T}\mid \mathbf{a}+\mathbf{b}\mid \mathbf{ab}\mid \overline{\mathbf{a}}\mid 0\mid 1$$

$$\mathbf{e}, \mathbf{f} ::= \mathbf{a} \mid \mathbf{p} \in \Sigma \mid \mathbf{ef} \mid \mathbf{e} +_{\mathbf{a}} \mathbf{f} \mid \mathbf{e}^{(\mathbf{a})}$$

$$\mathbf{a},\mathbf{b}::=t\in \mathcal{T}\mid \mathbf{a}+\mathbf{b}\mid \mathbf{ab}\mid \overline{\mathbf{a}}\mid 0\mid 1$$

$$\mathbf{e}, \mathbf{f} ::= \mathbf{a} \mid p \in \Sigma \mid \mathbf{ef} \mid \mathbf{e} +_{\mathbf{a}} \mathbf{f} \mid \mathbf{e}^{(\mathbf{a})}$$

 $\mathbf{e}; \mathbf{f}$

$$\mathbf{a},\mathbf{b}::=t\in \mathcal{T}\mid \mathbf{a}+\mathbf{b}\mid \mathbf{ab}\mid \overline{\mathbf{a}}\mid 0\mid 1$$

e, f ::= a |
$$p \in \Sigma$$
 | ef | e +_a f | e^(a)
if a then e else f

$$\mathbf{a},\mathbf{b}::=t\in \mathcal{T}\mid \mathbf{a}+\mathbf{b}\mid \mathbf{ab}\mid \overline{\mathbf{a}}\mid 0\mid 1$$

$$\mathbf{e}, \mathbf{f} ::= \mathbf{a} \mid p \in \Sigma \mid \mathbf{e}\mathbf{f} \mid \mathbf{e} +_{\mathbf{a}} \mathbf{f} \mid \mathbf{e}^{(\mathbf{a})}$$
while \mathbf{a} do \mathbf{e}

$$\mathbf{e} +_{\mathbf{a}} \mathbf{e} \equiv \mathbf{e}$$

$$e +_a e \equiv e$$
 $e +_a f \equiv f +_{\overline{a}} e$

$$e +_a e \equiv e$$
 $e +_a f \equiv f +_{\overline{a}} e$ $e +_a f \equiv ae +_a f$

$$\mathbf{e} +_{\mathbf{a}} \mathbf{e} \equiv \mathbf{e}$$
 $\mathbf{e} +_{\mathbf{a}} \mathbf{f} \equiv \mathbf{f} +_{\overline{\mathbf{a}}} \mathbf{e}$ $\mathbf{e} +_{\mathbf{a}} \mathbf{f} \equiv \mathbf{a} \mathbf{e} +_{\mathbf{a}} \mathbf{f}$ $\overline{\mathbf{a}} \mathbf{a} \equiv \mathbf{0}$

$$\mathbf{e} +_{\mathbf{a}} \mathbf{e} \equiv \mathbf{e}$$
 $\mathbf{e} +_{\mathbf{a}} \mathbf{f} \equiv \mathbf{f} +_{\overline{\mathbf{a}}} \mathbf{e}$ $\mathbf{e} +_{\mathbf{a}} \mathbf{f} \equiv \mathbf{a} \mathbf{e} +_{\mathbf{a}} \mathbf{f}$ $\overline{\mathbf{a}} \mathbf{a} \equiv 0$ $0 \mathbf{e} \equiv 0$

$$\mathbf{e} +_{\mathbf{a}} \mathbf{e} \equiv \mathbf{e}$$
 $\mathbf{e} +_{\mathbf{a}} \mathbf{f} \equiv \mathbf{f} +_{\overline{\mathbf{a}}} \mathbf{e}$ $\mathbf{e} +_{\mathbf{a}} \mathbf{f} \equiv \mathbf{a} \mathbf{e} +_{\mathbf{a}} \mathbf{f}$ $\overline{\mathbf{a}} \mathbf{a} \equiv 0$ $0 \mathbf{e} \equiv 0$

if a then ${\bf e}$ else assert false = ${\bf e} +_{\bf a} {\bf 0}$

$$\mathbf{e} +_{\mathbf{a}} \mathbf{e} \equiv \mathbf{e}$$
 $\mathbf{e} +_{\mathbf{a}} \mathbf{f} \equiv \mathbf{f} +_{\overline{\mathbf{a}}} \mathbf{e}$ $|\mathbf{e} +_{\mathbf{a}} \mathbf{f} \equiv \mathbf{a} \mathbf{e} +_{\mathbf{a}} \mathbf{f}|$ $\overline{\mathbf{a}} \mathbf{a} \equiv 0$ $0 \mathbf{e} \equiv 0$

if **a** then **e** else assert false = $\mathbf{e} +_{\mathbf{a}} \mathbf{0} \equiv \mathbf{a}\mathbf{e} +_{\mathbf{a}} \mathbf{0}$

$$\mathbf{e} +_{\mathbf{a}} \mathbf{e} \equiv \mathbf{e}$$
 $\mathbf{e} +_{\mathbf{a}} \mathbf{f} \equiv \mathbf{f} +_{\overline{\mathbf{a}}} \mathbf{e}$ $\mathbf{e} +_{\mathbf{a}} \mathbf{f} \equiv \mathbf{a} \mathbf{e} +_{\mathbf{a}} \mathbf{f}$ $\overline{\mathbf{a}} \mathbf{a} \equiv 0$ $0 \mathbf{e} \equiv 0$

if a then
$${\bf e}$$
 else assert false = ${\bf e} +_{\bf a} 0 \equiv {\bf a} {\bf e} +_{\bf a} 0$
$$\equiv 0 +_{\overline{\bf a}} {\bf a} {\bf e}$$

$$\mathbf{e} +_{\mathbf{a}} \mathbf{e} \equiv \mathbf{e}$$
 $\mathbf{e} +_{\mathbf{a}} \mathbf{f} \equiv \mathbf{f} +_{\overline{\mathbf{a}}} \mathbf{e}$ $\mathbf{e} +_{\mathbf{a}} \mathbf{f} \equiv \mathbf{a} \mathbf{e} +_{\mathbf{a}} \mathbf{f}$ $\overline{\mathbf{a}} \mathbf{a} \equiv 0$ $0 \mathbf{e} \equiv 0$

if a then e else assert false =
$$e +_a 0 \equiv ae +_a 0$$

 $\equiv 0 +_{\overline{a}} ae$
 $\equiv 0e +_{\overline{a}} ae$

$$\mathbf{e} +_{\mathbf{a}} \mathbf{e} \equiv \mathbf{e}$$
 $\mathbf{e} +_{\mathbf{a}} \mathbf{f} \equiv \mathbf{f} +_{\overline{\mathbf{a}}} \mathbf{e}$ $\mathbf{e} +_{\mathbf{a}} \mathbf{f} \equiv \mathbf{a} \mathbf{e} +_{\mathbf{a}} \mathbf{f}$ $|\overline{\mathbf{a}} \mathbf{a} \equiv 0|$ $0 \mathbf{e} \equiv 0$

if a then e else assert false =
$$e +_a 0 \equiv ae +_a 0$$

 $\equiv 0 +_{\overline{a}} ae$
 $\equiv 0e +_{\overline{a}} ae$
 $\equiv \overline{a}ae +_{\overline{a}} ae$

$$\mathbf{e} +_{\mathbf{a}} \mathbf{e} \equiv \mathbf{e}$$
 $\mathbf{e} +_{\mathbf{a}} \mathbf{f} \equiv \mathbf{f} +_{\overline{\mathbf{a}}} \mathbf{e}$ $\begin{bmatrix} \mathbf{e} +_{\mathbf{a}} \mathbf{f} \equiv \mathbf{a} \mathbf{e} +_{\mathbf{a}} \mathbf{f} \end{bmatrix}$ $\overline{\mathbf{a}} \mathbf{a} \equiv 0$ $0 \mathbf{e} \equiv 0$

if a then e else assert false = $e +_a 0 \equiv ae +_a 0$ $\equiv 0 +_{\overline{a}} ae$ $\equiv 0e +_{\overline{a}} ae$ $\equiv \overline{a}ae +_{\overline{a}} ae$ $\equiv ae +_{\overline{a}} ae$

$$|\mathbf{e} +_{\mathbf{a}} \mathbf{e} \equiv \mathbf{e}|$$
 $\mathbf{e} +_{\mathbf{a}} \mathbf{f} \equiv \mathbf{f} +_{\overline{\mathbf{a}}} \mathbf{e}$ $\mathbf{e} +_{\mathbf{a}} \mathbf{f} \equiv \mathbf{a} \mathbf{e} +_{\mathbf{a}} \mathbf{f}$ $\overline{\mathbf{a}} \mathbf{a} \equiv 0$ $0\mathbf{e} \equiv 0$

if a then e else assert false =
$$e +_a 0 \equiv ae +_a 0$$

 $\equiv 0 +_{\overline{a}} ae$
 $\equiv \overline{a}e +_{\overline{a}} ae$
 $\equiv ae +_{\overline{a}} ae$
 $\equiv ae = -_{\overline{a}} ae$
 $\equiv ae = -_{\overline{a}} ae$

Guarded Kleene Algebra with Tests

$$e +_{a} e \equiv e \qquad e +_{a} f \equiv f +_{\overline{a}} e \qquad (e +_{a} f) +_{b} g \equiv e +_{ab} (f +_{b} g) \qquad e +_{a} f \equiv ae +_{a} f$$

$$eg +_{a} fg \equiv (e +_{a} f)g \qquad (ef)g \equiv e(fg) \qquad 0e \equiv 0 \qquad e0 \equiv 0 \qquad 1e \equiv e \qquad e1 \equiv e$$

$$e^{(a)} \equiv ee^{(a)} +_{a} 1 \qquad (e +_{a} 1)^{(b)} \equiv (ae)^{(b)} \qquad g \equiv eg +_{a} f \implies g \equiv e^{(a)}f$$

Guarded Kleene Algebra with Tests

$$e +_{a} e \equiv e \qquad e +_{a} f \equiv f +_{\overline{a}} e \qquad (e +_{a} f) +_{b} g \equiv e +_{ab} (f +_{b} g) \qquad e +_{a} f \equiv ae +_{a} f$$

$$eg +_{a} fg \equiv (e +_{a} f)g \qquad (ef)g \equiv e(fg) \qquad 0e \equiv 0 \qquad e0 \equiv 0 \qquad 1e \equiv e \qquad e1 \equiv e$$

$$e^{(a)} \equiv ee^{(a)} +_{a} 1 \qquad (e +_{a} 1)^{(b)} \equiv (ae)^{(b)} \qquad g \equiv eg +_{a} f \implies g \equiv e^{(a)}f$$

it's a bit more subtle than this...

Guarded Kleene Algebra with Tests

$$e +_{a} e \equiv e \qquad e +_{a} f \equiv f +_{\overline{a}} e \qquad (e +_{a} f) +_{b} g \equiv e +_{ab} (f +_{b} g) \qquad e +_{a} f \equiv ae +_{a} f$$

$$eg +_{a} fg \equiv (e +_{a} f)g \qquad (ef)g \equiv e(fg) \qquad 0e \equiv 0 \qquad e0 \equiv 0 \qquad 1e \equiv e \qquad e1 \equiv e$$

$$e^{(a)} \equiv ee^{(a)} +_{a} 1 \qquad (e +_{a} 1)^{(b)} \equiv (ae)^{(b)} \qquad g \equiv eg +_{a} f \implies g \equiv e^{(a)}f$$

Theorem (Smolka et al. (2020))

- \blacktriangleright = is sound and complete w.r.t. a natural model.
- $\blacktriangleright \equiv$ is decidable in almost-linear time.

A more complicated equivalence

Open questions

- What if we drop the axiom $e0 \equiv 0$?
- How expressive is this syntax?
- Funny business with the last axiom.

Open questions

- What if we drop the axiom $e0 \equiv 0$?
- How expressive is this syntax?
- Funny business with the last axiom.

This talk:

- Answer to the first question.
- Progress towards answering the second question.
- Third problem is very hard...
Intuition: "failing now is the same as failing later"

Intuition: "failing now is the same as failing later"

... but what if the actions before failure matter?

Provable in GKAT: $e^{(a)} \equiv e^{(a)}\overline{a}$.

Provable in GKAT:
$$e^{(a)} \equiv e^{(a)}\overline{a}$$
.

In particular,

while true do e end

Provable in GKAT:
$$e^{(a)} \equiv e^{(a)}\overline{a}$$
.

In particular,

while true do \mathbf{e} end $= \mathbf{e}^{(1)}$

Provable in GKAT:
$$e^{(a)} \equiv e^{(a)}\overline{a}$$
.

In particular,

while true do ${\bf e}$ end $= {\bf e}^{(1)}$ $\equiv {\bf e}^{(1)} \cdot \overline{1}$

Provable in GKAT:
$$e^{(a)} \equiv e^{(a)}\overline{a}$$
.

In particular,

while true do \mathbf{e} end $= \mathbf{e}^{(1)}$ $\equiv \mathbf{e}^{(1)} \cdot \overline{1}$ $\equiv \mathbf{e}^{(1)} \cdot \mathbf{0}$

Provable in GKAT:
$$e^{(a)} \equiv e^{(a)}\overline{a}$$
.

In particular,

while true do \mathbf{e} end $= \mathbf{e}^{(1)}$ $\equiv \mathbf{e}^{(1)} \cdot \overline{1}$ $\equiv \mathbf{e}^{(1)} \cdot \mathbf{0}$ $\equiv \mathbf{0}$ = assert false

Provable in GKAT:
$$e^{(a)} \equiv e^{(a)}\overline{a}$$
.

In particular,

while true do \mathbf{e} end $= \mathbf{e}^{(1)}$ $\equiv \mathbf{e}^{(1)} \cdot \overline{1}$ $\equiv \mathbf{e}^{(1)} \cdot \mathbf{0}$ $\equiv \mathbf{0}$ = assert false

Provable in GKAT:
$$e^{(a)} \equiv e^{(a)}\overline{a}$$
.

In particular,

while true do \mathbf{e} end $= \mathbf{e}^{(1)}$ $\equiv \mathbf{e}^{(1)} \cdot \overline{1}$ $\equiv \mathbf{e}^{(1)} \cdot \mathbf{0}$ $\equiv \mathbf{0}$ = assert false

See also (Mamouras 2017).

Question

Let \equiv_0 be like \equiv , but without relating e0 to 0.

Can we recover the same results for this finer equivalence?

Question

Let \equiv_0 be like \equiv , but without relating e0 to 0.

Can we recover the same results for this finer equivalence?

Roadmap:

- 1. Find a model satisfying the axioms.
- 2. Prove soundness and completeness.
- 3. Decide equivalence within that model.

Guarded trees — informal description

A tree where, for each set of tests $\alpha \subseteq T$, a node either ...

- ... transitions to an "accept" or "reject" leaf node, or
- ► ... transitions to another internal node, executing an action $p \in \Sigma$.

Guarded trees — informal description

A tree where, for each set of tests $\alpha \subseteq T$, a node either ...

- ... transitions to an "accept" or "reject" leaf node, or
- ► ... transitions to another internal node, executing an action $p \in \Sigma$.

Note: guarded trees may be infinite!

Guarded trees — example

Expressions to trees — base case

Expressions to trees — Party hat diagrams

Expressions to trees — Party hat diagrams

Expressions to trees — Party hat diagrams

Every expression \mathbf{e} has an associated guarded tree $[\![\mathbf{e}]\!]$.

Every expression \mathbf{e} has an associated guarded tree $\llbracket \mathbf{e} \rrbracket$.

The early termination axiom does *not* hold: $[e0] \neq [0]$.

Every expression **e** has an associated guarded tree **[e**].

The early termination axiom does *not* hold: $[e0] \neq [0]$.

Question (Soundness & Completeness) Is $\mathbf{e} \equiv_0 \mathbf{f}$ equivalent to $\llbracket \mathbf{e} \rrbracket = \llbracket \mathbf{f} \rrbracket$?

Every expression **e** has an associated guarded tree **[e**].

The early termination axiom does *not* hold: $[e0] \neq [0]$.

Question (Soundness & Completeness) Is $\mathbf{e} \equiv_0 \mathbf{f}$ equivalent to $\llbracket \mathbf{e} \rrbracket = \llbracket \mathbf{f} \rrbracket$?

Question (Decidability) Can we decide whether [e] = [f]?

Theorem (Soundness & Completeness) $\mathbf{e} \equiv_0 \mathbf{f}$ if and only if $\llbracket \mathbf{e} \rrbracket = \llbracket \mathbf{f} \rrbracket$

Theorem (Soundness & Completeness) $\mathbf{e} \equiv_0 \mathbf{f}$ if and only if $\llbracket \mathbf{e} \rrbracket = \llbracket \mathbf{f} \rrbracket$

Theorem (Decidability for trees) It is decidable whether [e] = [f].

Theorem (Soundness & Completeness) $\mathbf{e} \equiv_0 \mathbf{f}$ if and only if $\llbracket \mathbf{e} \rrbracket = \llbracket \mathbf{f} \rrbracket$

Theorem (Decidability for trees) It is decidable whether [e] = [f].

Corollary (Decidability for terms) It is decidable whether $\mathbf{e} \equiv_0 \mathbf{f}$

Theorem (Soundness & Completeness) $\mathbf{e} \equiv_0 \mathbf{f}$ if and only if $\llbracket \mathbf{e} \rrbracket = \llbracket \mathbf{f} \rrbracket$

Theorem (Decidability for trees) It is decidable whether [e] = [f].

Corollary (Decidability for terms) It is decidable whether $\mathbf{e} \equiv_0 \mathbf{f}$

Note: decision procedures are *nearly linear* — actually feasible!

Theorem (Soundness & Completeness) $\mathbf{e} \equiv_0 \mathbf{f}$ if and only if $\llbracket \mathbf{e} \rrbracket = \llbracket \mathbf{f} \rrbracket$

Theorem (Decidability for trees) It is decidable whether [e] = [f].

Corollary (Decidability for terms) It is decidable whether $\mathbf{e} \equiv_0 \mathbf{f}$

Note: decision procedures are *nearly linear* — actually feasible! The "old" results from (Smolka et al. 2020) can be recovered from these.

Question

Let t be a guarded tree with finitely many distinct subtrees.

Is there an **e** such that $\llbracket \mathbf{e} \rrbracket = \mathbf{t}$?

Question

Let t be a guarded tree with finitely many distinct subtrees.

Is there an **e** such that $\llbracket \mathbf{e} \rrbracket = t$?

Not in general — for instance:

See also (Kozen and Tseng 2008).

Question

Let t be a guarded tree with finitely many distinct subtrees.

Is there an **e** such that $\llbracket \mathbf{e} \rrbracket = t$?

Reason: our syntax does not have goto. Only *structured* programs!

Not in general — for instance:

Question

Let t be a guarded tree with finitely many distinct subtrees.

Is there an **e** such that $\llbracket \mathbf{e} \rrbracket = t$?

Reason: our syntax does not have goto. Only *structured* programs!

 $\ell_0:$ if **b** then p; goto ℓ_1 else accept $\ell_1:$ if $\overline{\mathbf{b}}$ then q; goto ℓ_0 else accept

Not in general — for instance:

See also (Kozen and Tseng 2008).

Further work

Question

Is it decidable whether, given a tree t, there exists an e such that $\llbracket e \rrbracket = t$?

Further work

Question

Is it decidable whether, given a tree t, there exists an e such that $\llbracket e \rrbracket = t$?

Question

Can we identify rejection and looping without identifying early/late rejection?

What would be the appropriate axioms for such a semantics?

Thank you

https://kap.pe/slides

https://doi.org/10.4230/LIPIcs.ICALP.2021.142

Bonus — Reduction to KAT

Syntax is special case of Kleene Algebra with Tests (KAT):

```
if a then e else f end \mapsto a \cdot e + \overline{a} \cdot f
```

while **a** do **e** end \mapsto $(\mathbf{a} \cdot \mathbf{e})^* \cdot \overline{\mathbf{a}}$
Bonus — Reduction to KAT

Syntax is special case of Kleene Algebra with Tests (KAT):

```
if a then e else f end \mapsto a \cdot e + \overline{a} \cdot f
```

while **a** do **e** end \mapsto $(\mathbf{a} \cdot \mathbf{e})^* \cdot \overline{\mathbf{a}}$

Known results:

- ▶ There is a "nice" set of axioms for KAT.
- Soundness & completeness for a straightforward model.
- Equivalence according to these axioms is decidable.

Bonus — Reduction to KAT

Equivalence in KAT is **PSPACE-complete** (Cohen, Kozen, and Smith 1996).

Bonus — Reduction to KAT

Equivalence in KAT is **PSPACE-complete** (Cohen, Kozen, and Smith 1996).

But for practical inputs, good algorithms scale well — e.g., (Foster et al. 2015):

References

- Ernie Cohen, Dexter Kozen, and Frederick Smith (July 1996). The Complexity of Kleene Algebra with Tests. Tech. rep. TR96-1598. Cornell University. handle: 1813/7253.
- Nate Foster et al. (2015). "A Coalgebraic Decision Procedure for NetKAT". In: *POPL*, pp. 343–355. DOI: 10.1145/2676726.2677011.
- Dexter Kozen and Wei-Lung (Dustin) Tseng (2008). "The Böhm-Jacopini Theorem is False, Propositionally". In: MPC, pp. 177–192. DOI: 10.1007/978-3-540-70594-9_11.
- Konstantinos Mamouras (2017). "Equational Theories of Abnormal Termination Based on Kleene Algebra". In: FOSSACS. Vol. 10203. Lecture Notes in Computer Science, pp. 88–105. DOI: 10.1007/978-3-662-54458-7_6.
- Steffen Smolka et al. (Jan. 2020). "Guarded Kleene Algebra with Tests: Verification of Uninterpreted Programs in Nearly Linear Time". In: POPL. DOI: 10.1145/3371129.