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Motivation: comparing programs

if not a then

e;
else

f;
end

if a then

f;
else

e;
end

≡



Motivation: comparing programs

if a then

e;
while a do

e;
end

end

while a do

e;
end

≡



A more complicated equivalence

while a and b do

e;
end

while a do

f;
while a and b do

e;
end

end

while a do

if b then

e;
else

f;
end

end

≡



Research questions

I What is the minimal set of axioms?

I Are those axioms sound and complete for a model?

I Can we decide axiomatic equivalence?



Condensing the syntax

Treat while-programs as expressions — c.f. (Kozen and Tseng 2008).

a,b ::= t ∈ T | a + b | ab | a | 0 | 1

e, f ::= a | p ∈ Σ | ef | e +a f | e(a)
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Condensing the syntax

Treat while-programs as expressions — c.f. (Kozen and Tseng 2008).

a,b ::= t ∈ T | a + b | ab | a | 0 | 1

e, f ::= a | p ∈ Σ | ef | e +a f | e(a)

while a do e



Some example axioms
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e +a f ≡ f +a e e +a f ≡ ae +a f aa ≡ 0 0e ≡ 0

if a then e else assert false = e +a 0
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≡ ae = assert a; e
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I ≡ is decidable in almost-linear time.
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A more complicated equivalence

while a and b do

e;
end

while a do

f;
while a and b do

e;
end

end

e(ab) · (fe(ab))(a)

while a do

if b then

e;
else

f;
end

end

(e +b f)
(a)

≡



Open questions

I What if we drop the axiom e0 ≡ 0?

I How expressive is this syntax?

I Funny business with the last axiom.

This talk:

I Answer to the first question.

I Progress towards answering the second question.

I Third problem is very hard. . .
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Provable in GKAT: e(a) ≡ e(a)a.

In particular,

while true do e end = e(1)

≡ e(1) · 1
≡ e(1) · 0
≡ 0 = assert false

See also (Mamouras 2017).
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Mission statement

Question
Let ≡0 be like ≡, but without relating e0 to 0.

Can we recover the same results for this finer equivalence?

Roadmap:

1. Find a model satisfying the axioms.

2. Prove soundness and completeness.

3. Decide equivalence within that model.
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Guarded trees — informal description

A tree where, for each set of tests α ⊆ T , a node either . . .

I . . . transitions to an “accept” or “reject” leaf node, or

I . . . transitions to another internal node, executing an action p ∈ Σ.

Note: guarded trees may be infinite!



Guarded trees — example

∅ | q{b} | p

∅ | q{b} | p

∅ | q...
{b}

{b}

{b}



Expressions to trees — base case

{b0, b1, ...}

1

− | p
a = {b0, b1, ...} 7→ p ∈ Σ 7→



Expressions to trees — Party hat diagrams

{b} | p ∅ | q {b} | r ∅ | s {b} | p ∅ | s

+b =



Expressions to trees — Party hat diagrams

{b} | p ∅ | q

· =

∅ | p
{b}

∅

∅ | q{b} | p

∅ | q



Expressions to trees — Party hat diagrams

{b}

( )(b)

=

{b} | p

{b} | p

{b} | p

∅

{b} | p

∅

∅

...



A model in terms of guarded trees

Every expression e has an associated guarded tree JeK.

The early termination axiom does not hold: Je0K 6= J0K.

Question (Soundness & Completeness)

Is e ≡0 f equivalent to JeK = JfK?

Question (Decidability)

Can we decide whether JeK = JfK?
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Establishing completeness and decidability

Theorem (Soundness & Completeness)

e ≡0 f if and only if JeK = JfK

Theorem (Decidability for trees)

It is decidable whether JeK = JfK.

Corollary (Decidability for terms)

It is decidable whether e ≡0 f

Note: decision procedures are nearly linear — actually feasible!

The “old” results from (Smolka et al. 2020) can be recovered from these.
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Expressiveness

Question
Let t be a guarded tree with finitely many
distinct subtrees.

Is there an e such that JeK = t?

Reason: our syntax does not have goto.
Only structured programs!
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Question
Can we identify rejection and looping without identifying early/late rejection?

What would be the appropriate axioms for such a semantics?
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Bonus — Reduction to KAT

Syntax is special case of Kleene Algebra with Tests (KAT):
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I There is a “nice” set of axioms for KAT.

I Soundness & completeness for a straightforward model.

I Equivalence according to these axioms is decidable.
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