Guarded Kleene Algebra with Tests

Coequations, Coinduction, and Completeness

Tobias Kappé
Institute for Logic, Language and Computation, University of Amsterdam

CS Seminar, Royal Holloway, University of London — October 27, 2021

Joint work with . ..

Todd Schmid Dexter Kozen Alexandra Silva
(UCL, Nijmegen) (Cornell) (Cornell, UCL)

Motivation: comparing programs

if not a then if a then
e f;
else = else
f; e

end end

Motivation: comparing programs

if a then
e hile a d
while a do while ado
= e;
e; q
end en

end

A more complicated equivalence

while a and b do
€;

end

while a do

f;
while a and b do

e;

end

end

while a do
if b then
€,
else
f;
end
end

Research questions

» What is the minimal set of axioms?
» Are those axioms sound and complete for a model?

» Can we decide axiomatic equivalence?

Condensing the syntax

Treat while-programs as expressions — c.f. (Kozen and Tseng 2008).

Condensing the syntax

Treat while-programs as expressions — c.f. (Kozen and Tseng 2008).

a,b::

teT|a+b|ab|a|0]|1

efi=a|pcX|ef|et,f|ed®

Condensing the syntax

Treat while-programs as expressions — c.f. (Kozen and Tseng 2008).

a,b::

teT|a+b|ab|a|0]|1
aorb

efi=a|pcX|ef|et,f|ed®

Condensing the syntax

Treat while-programs as expressions — c.f. (Kozen and Tseng 2008).

a,b::

teT|a+b|ab|a|0]|1
aand b

efi=a|pcX|ef|et,f|ed®

Condensing the syntax

Treat while-programs as expressions — c.f. (Kozen and Tseng 2008).

a,b::

teT|a+b|ab|a|0]|1
not a

efi=a|pcX|ef|et,f|ed®

Condensing the syntax

Treat while-programs as expressions — c.f. (Kozen and Tseng 2008).

a,b::

teT|a+b|ab|a|0]|1
false

efi=a|pcX|ef|et,f|ed®

Condensing the syntax

Treat while-programs as expressions — c.f. (Kozen and Tseng 2008).

a,b::

teT|a+b|ab|a|0]|1
true

efi=a|pcX|ef|et,f|ed®

Condensing the syntax

Treat while-programs as expressions — c.f. (Kozen and Tseng 2008).

a,b::

teT|a+b|ab|a|0]|1

efi=a|pcX|ef|et,f|ed®

assert a

Condensing the syntax

Treat while-programs as expressions — c.f. (Kozen and Tseng 2008).

a,b::

teT|a+b|ab|a|0]|1

efi=a|pcX|ef|et,f|ed®

Condensing the syntax

Treat while-programs as expressions — c.f. (Kozen and Tseng 2008).

a,b::

teT|a+b|ab|a|0]|1

efi=a|pcX|ef|et,f|ed®

e f

Condensing the syntax

Treat while-programs as expressions — c.f. (Kozen and Tseng 2008).

a,b::

teT|a+b|ab|a|0]|1

efi=a|pcX|ef|et,f|ed®

if a then e else f

Condensing the syntax

Treat while-programs as expressions — c.f. (Kozen and Tseng 2008).

a,b::

teT|a+b|ab|a|0]|1

efi=a|pcX|ef|et,f|e®

while a do e

Some example axioms

et,e=e

Some example axioms

et,e=e et,f=f+ze

Some example axioms

et+,e=e e+, f=f+ze et,f=ae+,f

Some example axioms

et,e=e et,f=f4ze et,f=ae+,f aa=0

Some example axioms

et,e=e et,f=f+ze

et,f=ae+,f

aa=0

Oe =

Some example axioms

et,e=e et,f=f+ze et,f=ae+,f

if a then e else assert false=e+,0

aa=0

Oe =

Some example axioms

,,,,,,,,,,,,,,

et,e=e et,f=f+ze ‘e—|—af_ae+af‘

if a then e else assert false—=e+,0=ae+,0

aa=0

Oe =

Some example axioms

et,e=e etaf=f+ze! et,f=ae+,f

if a then e else assert false—=e+,0=ae+,0
=0+4zae

aa=0

Oe =

Some example axioms

et,e=e et,f=f+ze et,f=ae+,f

if a then e else assert false=e+,0

=ae+,0
O—i-gae
= 0e 43 ae

Some example axioms

et,e=e et,f=f+ze et,f=ae+,f

if a then e else assert false—=e+,0=ae+,0
=0+4zae
= 0e 43 ae

= aae |3 ae

Some example axioms

et,e=e et,f=f+ze et,f=ae+,f

e |
! |
! |

if a then e else assert false—=e+,0=ae+,0
=0+4zae
= 0e 43 ae
= aae |3 ae

= ae +3 ae

aa=0

Oe =

Some example axioms

let,e=e! etf=f4ze et,f=ae+,f aa=0 Oe =

if a then e else assert false—=e+,0=ae+,0
=0+4zae
Oe 43 ae

aae +3 ae

ae +3 ae

ae — assert a; e

Guarded Kleene Algebra with Tests

et,e=e e+, f=f45e (e+af)+pg=e+a (F+1b g) et,f=ae+,f

eg+.fg=(e+a.f)g (ef)g = e(fg) 0e=0 e0=0 le=e el=e

e =eel® 1,1 (e +21)®) = (ae)® g=eg+.f = g=elf

Guarded Kleene Algebra with Tests

et,e=e e+, f=f45e (e+af)+pg=e+a (F+1b g) et,f=ae+,f

eg+.fg=(e+a.f)g (ef)g = e(fg) 0e=0 e0=0 le=e el=e
e =eel® 1,1 (e +21)®) = (ae)® g=eg+.f = g=elf

it's a bit more subtle than this. ..

Guarded Kleene Algebra with Tests

et,e=e e+, f=f45e (e+af)+pg=e+a (F+1b g) et,f=ae+,f

eg+.fg=(e+a.f)g (ef)g = e(fg) 0e=0 e0=0 le=e el=e

e =eel 4,1 (e +21)®) = (ae)® g=eg+.f = g=elf

Theorem (Smolka et al. (2020))

» = /s sound and complete w.r.t. a natural model.

» = s decidable in almost-linear time.

A more complicated equivalence

while a and b do
€;
end
while a do
f;
while a and b do
e;
end
end

e(@b) . (fe(@b))®)

while a do
if b then
e;
else
f;
end
end

(e “+p f)(a)

Open questions

» What if we drop the axiom e0 = 07
> How expressive is this syntax?

» Funny business with the last axiom.

Open questions

» What if we drop the axiom e0 = 07
> How expressive is this syntax?

» Funny business with the last axiom.

This talk:
» Answer to the first question.
P> Progress towards answering the second question.
» Third problem is very hard. ..

The axiom e0 =0

Intuition: “failing now is the same as failing later” ...

The axiom e0 =0

Intuition: “failing now is the same as failing later” ...

... but what if the actions before failure matter?

But wait, there's more

Provable in GKAT: e(®) = e(@)3.

But wait, there's more

Provable in GKAT: e(®) = e(@)3.
In particular,

while true do e end

But wait, there's more

Provable in GKAT: e(®) = e(@)3.
In particular,

while true do e end:e(l)

But wait, there's more

Provable in GKAT: e(®) = e(@)3.
In particular,

while true do e end:e(l)

=e.1

But wait, there's more

Provable in GKAT: e(®) = e(@)3.
In particular,

while true do e end:e(l)

But wait, there's more

Provable in GKAT: e(®) = e(@)3.
In particular,

while true do e end:e(l)

e
=0 — assert false

But wait, there's more

Provable in GKAT: e(®) = e(@)3.
In particular,

while true do e end:e(l)

e
=0 — assert false

But wait, there's more

Provable in GKAT: e(®) = e(@)3.
In particular,

while true do e end:e(l)

e
=0 — assert false

See also (Mamouras 2017).

Mission statement

Question
Let =g be like =, but without relating e0 to 0.

Can we recover the same results for this finer equivalence?

Mission statement

Question
Let =g be like =, but without relating e0 to 0.

Can we recover the same results for this finer equivalence?

Roadmap:
1. Find a model satisfying the axioms.
2. Prove soundness and completeness.

3. Decide equivalence within that model.

Guarded trees — informal description

A tree where, for each set of tests &« C T, a node either ...
P ... transitions to an “accept” or “reject” leaf node, or

P> ... transitions to another internal node, executing an action p € ¥.

Guarded trees — informal description

A tree where, for each set of tests &« C T, a node either ...
P ... transitions to an “accept” or “reject” leaf node, or

P> ... transitions to another internal node, executing an action p € ¥.

Note: guarded trees may be infinite!

Guarded trees — example

{b}

Expressions to trees — base case

a = {bo, bl, } — U

{bo, by, ...

}

pEX

Expressions to trees — Party hat diagrams

Expressions to trees — Party hat diagrams

0|p
{b}

Expressions to trees — Party hat diagrams

{b}1p

{b}

A model in terms of guarded trees

Every expression e has an associated guarded tree [e].

A model in terms of guarded trees

Every expression e has an associated guarded tree [e].

The early termination axiom does not hold: [e0] # [0].

A model in terms of guarded trees

Every expression e has an associated guarded tree [e].

The early termination axiom does not hold: [e0] # [0].

Question (Soundness & Completeness)
Is e = f equivalent to [e] = [f]?

A model in terms of guarded trees

Every expression e has an associated guarded tree [e].

The early termination axiom does not hold: [e0] # [0].

Question (Soundness & Completeness)
Is e = f equivalent to [e] = [f]?

Question (Decidability)
Can we decide whether [e]] = [f]?

Establishing completeness and decidability

Theorem (Soundness & Completeness)
e =¢ f if and only if [e] = [f]

Establishing completeness and decidability

Theorem (Soundness & Completeness)
e = f if and only if [e] = [f]

Theorem (Decidability for trees)
It is decidable whether [e] = [f].

Establishing completeness and decidability

Theorem (Soundness & Completeness)
e = f if and only if [e] = [f]

Theorem (Decidability for trees)
It is decidable whether [e] = [f].

Corollary (Decidability for terms)
It is decidable whether e =¢ f

Establishing completeness and decidability

Theorem (Soundness & Completeness)
e = f if and only if [e] = [f]

Theorem (Decidability for trees)
It is decidable whether [e] = [f].

Corollary (Decidability for terms)
It is decidable whether e =¢ f

Note: decision procedures are nearly linear — actually feasible!

Establishing completeness and decidability

Theorem (Soundness & Completeness)
e = f if and only if [e] = [f]

Theorem (Decidability for trees)
It is decidable whether [e] = [f].

Corollary (Decidability for terms)
It is decidable whether e =g f

Note: decision procedures are nearly linear — actually feasible!

The “old” results from (Smolka et al. 2020) can be recovered from these.

Expressiveness

Question

Let t be a guarded tree with finitely many
distinct subtrees.

Is there an e such that [e] =t7

Expressiveness

Not in general — for instance:

Question

Let t be a guarded tree with finitely many
distinct subtrees.

Is there an e such that [e] =t7

See also (Kozen and Tseng 2008).

Expressiveness

Not in general — for instance:

Question

Let t be a guarded tree with finitely many
distinct subtrees.

Is there an e such that [e] =t7

Reason: our syntax does not have goto.
Only structured programs!

See also (Kozen and Tseng 2008).

Expressiveness

Not in general — for instance:

Question

Let t be a guarded tree with finitely many
distinct subtrees.

Is there an e such that [e] =t7

Reason: our syntax does not have goto.
Only structured programs!

lo:if b then p; goto ¢; else accept

¢1:if b then q; goto /y else accept

See also (Kozen and Tseng 2008).

Further work

Question
Is it decidable whether, given a tree t, there exists an e such that [e] =t?

Further work

Question
Is it decidable whether, given a tree t, there exists an e such that [e] = t7?

Question
Can we identify rejection and looping without identifying early/late rejection?

What would be the appropriate axioms for such a semantics?

Thank you

https://kap.pe/slides

https://doi.org/10.4230/LIPIcs.ICALP.2021.142

https://kap.pe/slides
https://doi.org/10.4230/LIPIcs.ICALP.2021.142

Bonus — Reduction to KAT

Syntax is special case of Kleene Algebra with Tests (KAT):

if a then e else f end—~a-e+a-f

while a do e end+> (a-€)*-a

Bonus — Reduction to KAT

Syntax is special case of Kleene Algebra with Tests (KAT):

if a then e else f end—~a-e+a-f

while a do e end+> (a-€)*-a

Known results:
» There is a "nice” set of axioms for KAT.
P> Soundness & completeness for a straightforward model.

» Equivalence according to these axioms is decidable.

Bonus — Reduction to KAT

Equivalence in KAT is PsPACE-complete (Cohen, Kozen, and Smith 1996).

Bonus — Reduction to KAT

Equivalence in KAT is PsPACE-complete (Cohen, Kozen, and Smith 1996).

But for practical inputs, good algorithms scale well — e.g., (Foster et al. 2015):

10000 ' NG

@ . .'- S

e 1000 L

o ool

2 100 | I

= Cod

2 o

E 10 |
o Ll . .
1000 10000 100000

Term Size

References

[§ Ernie Cohen, Dexter Kozen, and Frederick Smith (July 1996). The Complexity of
Kleene Algebra with Tests. Tech. rep. TR96-1598. Cornell University. handle:
1813/7253.

[4 Nate Foster et al. (2015). “A Coalgebraic Decision Procedure for NetKAT" . In:
POPL, pp. 343-355. DOI: 10.1145/2676726.2677011.

[8 Dexter Kozen and Wei-Lung (Dustin) Tseng (2008). “The Bhm-Jacopini
Theorem is False, Propositionally”. In: MPC, pp. 177-192. DOI:
10.1007/978-3-540-70594-9_11.

[§ Konstantinos Mamouras (2017). “Equational Theories of Abnormal Termination
Based on Kleene Algebra”. In: FOSSACS. Vol. 10203. Lecture Notes in Computer
Science, pp. 88-105. DOI: 10.1007/978-3-662-54458-7_6.

[Steffen Smolka et al. (Jan. 2020). “Guarded Kleene Algebra with Tests:
Verification of Uninterpreted Programs in Nearly Linear Time”. In: POPL. DOI:
10.1145/3371129.

1813/7253
https://doi.org/10.1145/2676726.2677011
https://doi.org/10.1007/978-3-540-70594-9_11
https://doi.org/10.1007/978-3-662-54458-7_6
https://doi.org/10.1145/3371129

	References

