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Motivation: comparing programs
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if a then
e hile a d
while a do while ado
= e;
e; q
end en

end



A more complicated equivalence

while a and b do
€;

end

while a do

f;
while a and b do

e;

end

end

while a do
if b then
€,
else
f;
end
end



Research questions

» What is the minimal set of axioms?
» Are those axioms sound and complete for a model?

» Can we decide axiomatic equivalence?
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Condensing the syntax

Treat while-programs as expressions — c.f. (Kozen and Tseng 2008).

a,b::

teT|a+b|ab|a|0]|1

efi=a|pcX|ef|et,f|ed®

if a then e else f



Condensing the syntax

Treat while-programs as expressions — c.f. (Kozen and Tseng 2008).

a,b::

teT|a+b|ab|a|0]|1

efi=a|pcX|ef|et,f|e®

while a do e
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Some example axioms
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e |
! |
! |
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Some example axioms

let,e=e! etf=f4ze et,f=ae+,f aa=0 Oe =

if a then e else assert false—=e+,0=ae+,0
=0+4zae
Oe 43 ae

aae +3 ae

ae +3 ae

ae — assert a; e



Guarded Kleene Algebra with Tests
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it's a bit more subtle than this. ..



Guarded Kleene Algebra with Tests

et,e=e e+, f=f45e (e+af)+pg=e+a (F+1b g) et,f=ae+,f

eg+.fg=(e+a.f)g (ef)g = e(fg) 0e=0 e0=0 le=e el=e

e =eel 4,1 (e +21)®) = (ae)® g=eg+.f = g=elf

Theorem (Smolka et al. (2020))

» = /s sound and complete w.r.t. a natural model.

» = s decidable in almost-linear time.



A more complicated equivalence

while a and b do
€;
end
while a do
f;
while a and b do
e;
end
end

e(@b) . (fe(@b))®)

while a do
if b then
e;
else
f;
end
end

(e “+p f)(a)
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Open questions

» What if we drop the axiom e0 = 07
> How expressive is this syntax?

» Funny business with the last axiom.

This talk:
» Answer to the first question.
P> Progress towards answering the second question.
» Third problem is very hard. ..



The axiom e0 =0

Intuition: “failing now is the same as failing later” ...



The axiom e0 =0

Intuition: “failing now is the same as failing later” ...

... but what if the actions before failure matter?
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But wait, there's more

Provable in GKAT: e(®) = e(@)3.
In particular,

while true do e end:e(l)

e
=0 — assert false

See also (Mamouras 2017).
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Mission statement

Question
Let =g be like =, but without relating e0 to 0.

Can we recover the same results for this finer equivalence?

Roadmap:
1. Find a model satisfying the axioms.
2. Prove soundness and completeness.

3. Decide equivalence within that model.
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A tree where, for each set of tests &« C T, a node either ...
P ... transitions to an “accept” or “reject” leaf node, or

P> ... transitions to another internal node, executing an action p € ¥.



Guarded trees — informal description

A tree where, for each set of tests &« C T, a node either ...
P ... transitions to an “accept” or “reject” leaf node, or

P> ... transitions to another internal node, executing an action p € ¥.

Note: guarded trees may be infinite!



Guarded trees — example

{b}



Expressions to trees — base case

a = {bo, bl, } — U

{bo, by, ...

}

pEX



Expressions to trees — Party hat diagrams
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{b}




Expressions to trees — Party hat diagrams

{b}1p

{b}
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A model in terms of guarded trees

Every expression e has an associated guarded tree [e].

The early termination axiom does not hold: [e0] # [0].

Question (Soundness & Completeness)
Is e = f equivalent to [e] = [f]?

Question (Decidability)
Can we decide whether [e]] = [f]?



Establishing completeness and decidability

Theorem (Soundness & Completeness)
e =¢ f if and only if [e] = [f]



Establishing completeness and decidability

Theorem (Soundness & Completeness)
e = f if and only if [e] = [f]

Theorem (Decidability for trees)
It is decidable whether [e] = [f].



Establishing completeness and decidability

Theorem (Soundness & Completeness)
e = f if and only if [e] = [f]

Theorem (Decidability for trees)
It is decidable whether [e] = [f].

Corollary (Decidability for terms)
It is decidable whether e =¢ f



Establishing completeness and decidability

Theorem (Soundness & Completeness)
e = f if and only if [e] = [f]

Theorem (Decidability for trees)
It is decidable whether [e] = [f].

Corollary (Decidability for terms)
It is decidable whether e =¢ f

Note: decision procedures are nearly linear — actually feasible!



Establishing completeness and decidability

Theorem (Soundness & Completeness)
e = f if and only if [e] = [f]

Theorem (Decidability for trees)
It is decidable whether [e] = [f].

Corollary (Decidability for terms)
It is decidable whether e =g f

Note: decision procedures are nearly linear — actually feasible!

The “old” results from (Smolka et al. 2020) can be recovered from these.
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Expressiveness

Not in general — for instance:

Question

Let t be a guarded tree with finitely many
distinct subtrees.

Is there an e such that [e] =t7

Reason: our syntax does not have goto.
Only structured programs!

lo:if b then p; goto ¢; else accept

¢1:if b then q; goto /y else accept

See also (Kozen and Tseng 2008).
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Further work

Question
Is it decidable whether, given a tree t, there exists an e such that [e] = t7?

Question
Can we identify rejection and looping without identifying early/late rejection?

What would be the appropriate axioms for such a semantics?



Thank you

https://kap.pe/slides

https://doi.org/10.4230/LIPIcs.ICALP.2021.142
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Bonus — Reduction to KAT

Syntax is special case of Kleene Algebra with Tests (KAT):

if a then e else f end—~a-e+a-f

while a do e end+> (a-€)*-a



Bonus — Reduction to KAT

Syntax is special case of Kleene Algebra with Tests (KAT):

if a then e else f end—~a-e+a-f

while a do e end+> (a-€)*-a

Known results:
» There is a "nice” set of axioms for KAT.
P> Soundness & completeness for a straightforward model.

» Equivalence according to these axioms is decidable.
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Bonus — Reduction to KAT

Equivalence in KAT is PsPACE-complete (Cohen, Kozen, and Smith 1996).

But for practical inputs, good algorithms scale well — e.g., (Foster et al. 2015):
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