
Guarded Kleene Algebra with Tests
Coequations, Coinduction, and Completeness

Tobias Kappé

Institute for Logic, Language and Computation, University of Amsterdam

CS Seminar, Royal Holloway, University of London — October 27, 2021

Joint work with . . .

Todd Schmid
(UCL, Nijmegen)

Dexter Kozen
(Cornell)

Alexandra Silva
(Cornell, UCL)

Motivation: comparing programs

if not a then

e;
else

f;
end

if a then

f;
else

e;
end

≡

Motivation: comparing programs

if a then

e;
while a do

e;
end

end

while a do

e;
end

≡

A more complicated equivalence

while a and b do

e;
end

while a do

f;
while a and b do

e;
end

end

while a do

if b then

e;
else

f;
end

end

≡

Research questions

I What is the minimal set of axioms?

I Are those axioms sound and complete for a model?

I Can we decide axiomatic equivalence?

Condensing the syntax

Treat while-programs as expressions — c.f. (Kozen and Tseng 2008).

a,b ::= t ∈ T | a + b | ab | a | 0 | 1

e, f ::= a | p ∈ Σ | ef | e +a f | e(a)

Condensing the syntax

Treat while-programs as expressions — c.f. (Kozen and Tseng 2008).

a,b ::= t ∈ T | a + b | ab | a | 0 | 1

e, f ::= a | p ∈ Σ | ef | e +a f | e(a)

Condensing the syntax

Treat while-programs as expressions — c.f. (Kozen and Tseng 2008).

a,b ::= t ∈ T | a + b

a or b

| ab | a | 0 | 1

e, f ::= a | p ∈ Σ | ef | e +a f | e(a)

Condensing the syntax

Treat while-programs as expressions — c.f. (Kozen and Tseng 2008).

a,b ::= t ∈ T | a + b | ab

a and b

| a | 0 | 1

e, f ::= a | p ∈ Σ | ef | e +a f | e(a)

Condensing the syntax

Treat while-programs as expressions — c.f. (Kozen and Tseng 2008).

a,b ::= t ∈ T | a + b | ab | a

not a

| 0 | 1

e, f ::= a | p ∈ Σ | ef | e +a f | e(a)

Condensing the syntax

Treat while-programs as expressions — c.f. (Kozen and Tseng 2008).

a,b ::= t ∈ T | a + b | ab | a | 0

false

| 1

e, f ::= a | p ∈ Σ | ef | e +a f | e(a)

Condensing the syntax

Treat while-programs as expressions — c.f. (Kozen and Tseng 2008).

a,b ::= t ∈ T | a + b | ab | a | 0 | 1

true

e, f ::= a | p ∈ Σ | ef | e +a f | e(a)

Condensing the syntax

Treat while-programs as expressions — c.f. (Kozen and Tseng 2008).

a,b ::= t ∈ T | a + b | ab | a | 0 | 1

e, f ::= a

assert a

| p ∈ Σ | ef | e +a f | e(a)

Condensing the syntax

Treat while-programs as expressions — c.f. (Kozen and Tseng 2008).

a,b ::= t ∈ T | a + b | ab | a | 0 | 1

e, f ::= a | p ∈ Σ | ef | e +a f | e(a)

Condensing the syntax

Treat while-programs as expressions — c.f. (Kozen and Tseng 2008).

a,b ::= t ∈ T | a + b | ab | a | 0 | 1

e, f ::= a | p ∈ Σ | ef

e; f

| e +a f | e(a)

Condensing the syntax

Treat while-programs as expressions — c.f. (Kozen and Tseng 2008).

a,b ::= t ∈ T | a + b | ab | a | 0 | 1

e, f ::= a | p ∈ Σ | ef | e +a f

if a then e else f

| e(a)

Condensing the syntax

Treat while-programs as expressions — c.f. (Kozen and Tseng 2008).

a,b ::= t ∈ T | a + b | ab | a | 0 | 1

e, f ::= a | p ∈ Σ | ef | e +a f | e(a)

while a do e

Some example axioms

e +a e ≡ e

e +a f ≡ f +a e e +a f ≡ ae +a f aa ≡ 0 0e ≡ 0

if a then e else assert false = e +a 0

≡ ae +a 0

≡ 0 +a ae

≡ 0e +a ae

≡ aae +a ae

≡ ae +a ae

≡ ae = assert a; e

Some example axioms

e +a e ≡ e e +a f ≡ f +a e

e +a f ≡ ae +a f aa ≡ 0 0e ≡ 0

if a then e else assert false = e +a 0

≡ ae +a 0

≡ 0 +a ae

≡ 0e +a ae

≡ aae +a ae

≡ ae +a ae

≡ ae = assert a; e

Some example axioms

e +a e ≡ e e +a f ≡ f +a e e +a f ≡ ae +a f

aa ≡ 0 0e ≡ 0

if a then e else assert false = e +a 0

≡ ae +a 0

≡ 0 +a ae

≡ 0e +a ae

≡ aae +a ae

≡ ae +a ae

≡ ae = assert a; e

Some example axioms

e +a e ≡ e e +a f ≡ f +a e e +a f ≡ ae +a f aa ≡ 0

0e ≡ 0

if a then e else assert false = e +a 0

≡ ae +a 0

≡ 0 +a ae

≡ 0e +a ae

≡ aae +a ae

≡ ae +a ae

≡ ae = assert a; e

Some example axioms

e +a e ≡ e e +a f ≡ f +a e e +a f ≡ ae +a f aa ≡ 0 0e ≡ 0

if a then e else assert false = e +a 0

≡ ae +a 0

≡ 0 +a ae

≡ 0e +a ae

≡ aae +a ae

≡ ae +a ae

≡ ae = assert a; e

Some example axioms

e +a e ≡ e e +a f ≡ f +a e e +a f ≡ ae +a f aa ≡ 0 0e ≡ 0

if a then e else assert false = e +a 0

≡ ae +a 0

≡ 0 +a ae

≡ 0e +a ae

≡ aae +a ae

≡ ae +a ae

≡ ae = assert a; e

Some example axioms

e +a e ≡ e e +a f ≡ f +a e e +a f ≡ ae +a f aa ≡ 0 0e ≡ 0

if a then e else assert false = e +a 0 ≡ ae +a 0

≡ 0 +a ae

≡ 0e +a ae

≡ aae +a ae

≡ ae +a ae

≡ ae = assert a; e

Some example axioms

e +a e ≡ e e +a f ≡ f +a e e +a f ≡ ae +a f aa ≡ 0 0e ≡ 0

if a then e else assert false = e +a 0 ≡ ae +a 0

≡ 0 +a ae

≡ 0e +a ae

≡ aae +a ae

≡ ae +a ae

≡ ae = assert a; e

Some example axioms

e +a e ≡ e e +a f ≡ f +a e e +a f ≡ ae +a f aa ≡ 0 0e ≡ 0

if a then e else assert false = e +a 0 ≡ ae +a 0

≡ 0 +a ae

≡ 0e +a ae

≡ aae +a ae

≡ ae +a ae

≡ ae = assert a; e

Some example axioms

e +a e ≡ e e +a f ≡ f +a e e +a f ≡ ae +a f aa ≡ 0 0e ≡ 0

if a then e else assert false = e +a 0 ≡ ae +a 0

≡ 0 +a ae

≡ 0e +a ae

≡ aae +a ae

≡ ae +a ae

≡ ae = assert a; e

Some example axioms

e +a e ≡ e e +a f ≡ f +a e e +a f ≡ ae +a f aa ≡ 0 0e ≡ 0

if a then e else assert false = e +a 0 ≡ ae +a 0

≡ 0 +a ae

≡ 0e +a ae

≡ aae +a ae

≡ ae +a ae

≡ ae = assert a; e

Some example axioms

e +a e ≡ e e +a f ≡ f +a e e +a f ≡ ae +a f aa ≡ 0 0e ≡ 0

if a then e else assert false = e +a 0 ≡ ae +a 0

≡ 0 +a ae

≡ 0e +a ae

≡ aae +a ae

≡ ae +a ae

≡ ae = assert a; e

Guarded Kleene Algebra with Tests

e +a e ≡ e e +a f ≡ f +a e (e +a f) +b g ≡ e +ab (f +b g) e +a f ≡ ae +a f

eg +a fg ≡ (e +a f)g (ef)g ≡ e(fg) 0e ≡ 0 e0 ≡ 0 1e ≡ e e1 ≡ e

e(a) ≡ ee(a) +a 1 (e +a 1)(b) ≡ (ae)(b) g ≡ eg +a f
∗

=⇒ g ≡ e(a)f

Theorem (Smolka et al. (2020))

I ≡ is sound and complete w.r.t. a natural model.

I ≡ is decidable in almost-linear time.

Guarded Kleene Algebra with Tests

e +a e ≡ e e +a f ≡ f +a e (e +a f) +b g ≡ e +ab (f +b g) e +a f ≡ ae +a f

eg +a fg ≡ (e +a f)g (ef)g ≡ e(fg) 0e ≡ 0 e0 ≡ 0 1e ≡ e e1 ≡ e

e(a) ≡ ee(a) +a 1 (e +a 1)(b) ≡ (ae)(b) g ≡ eg +a f
∗

=⇒

it’s a bit more subtle than this. . .

g ≡ e(a)f

Theorem (Smolka et al. (2020))

I ≡ is sound and complete w.r.t. a natural model.

I ≡ is decidable in almost-linear time.

Guarded Kleene Algebra with Tests

e +a e ≡ e e +a f ≡ f +a e (e +a f) +b g ≡ e +ab (f +b g) e +a f ≡ ae +a f

eg +a fg ≡ (e +a f)g (ef)g ≡ e(fg) 0e ≡ 0 e0 ≡ 0 1e ≡ e e1 ≡ e

e(a) ≡ ee(a) +a 1 (e +a 1)(b) ≡ (ae)(b) g ≡ eg +a f
∗

=⇒ g ≡ e(a)f

Theorem (Smolka et al. (2020))

I ≡ is sound and complete w.r.t. a natural model.

I ≡ is decidable in almost-linear time.

A more complicated equivalence

while a and b do

e;
end

while a do

f;
while a and b do

e;
end

end

e(ab) · (fe(ab))(a)

while a do

if b then

e;
else

f;
end

end

(e +b f)
(a)

≡

Open questions

I What if we drop the axiom e0 ≡ 0?

I How expressive is this syntax?

I Funny business with the last axiom.

This talk:

I Answer to the first question.

I Progress towards answering the second question.

I Third problem is very hard. . .

Open questions

I What if we drop the axiom e0 ≡ 0?

I How expressive is this syntax?

I Funny business with the last axiom.

This talk:

I Answer to the first question.

I Progress towards answering the second question.

I Third problem is very hard. . .

The axiom e0 ≡ 0

Intuition: “failing now is the same as failing later” . . .

. . . but what if the actions before failure matter?

The axiom e0 ≡ 0

Intuition: “failing now is the same as failing later” . . .

. . . but what if the actions before failure matter?

But wait, there’s more

Provable in GKAT: e(a) ≡ e(a)a.

In particular,

while true do e end = e(1)

≡ e(1) · 1
≡ e(1) · 0
≡ 0 = assert false

See also (Mamouras 2017).

But wait, there’s more

Provable in GKAT: e(a) ≡ e(a)a.

In particular,

while true do e end

= e(1)

≡ e(1) · 1
≡ e(1) · 0
≡ 0 = assert false

See also (Mamouras 2017).

But wait, there’s more

Provable in GKAT: e(a) ≡ e(a)a.

In particular,

while true do e end = e(1)

≡ e(1) · 1
≡ e(1) · 0
≡ 0 = assert false

See also (Mamouras 2017).

But wait, there’s more

Provable in GKAT: e(a) ≡ e(a)a.

In particular,

while true do e end = e(1)

≡ e(1) · 1

≡ e(1) · 0
≡ 0 = assert false

See also (Mamouras 2017).

But wait, there’s more

Provable in GKAT: e(a) ≡ e(a)a.

In particular,

while true do e end = e(1)

≡ e(1) · 1
≡ e(1) · 0

≡ 0 = assert false

See also (Mamouras 2017).

But wait, there’s more

Provable in GKAT: e(a) ≡ e(a)a.

In particular,

while true do e end = e(1)

≡ e(1) · 1
≡ e(1) · 0
≡ 0 = assert false

See also (Mamouras 2017).

But wait, there’s more

Provable in GKAT: e(a) ≡ e(a)a.

In particular,

while true do e end = e(1)

≡ e(1) · 1
≡ e(1) · 0
≡ 0 = assert false

See also (Mamouras 2017).

But wait, there’s more

Provable in GKAT: e(a) ≡ e(a)a.

In particular,

while true do e end = e(1)

≡ e(1) · 1
≡ e(1) · 0
≡ 0 = assert false

See also (Mamouras 2017).

Mission statement

Question
Let ≡0 be like ≡, but without relating e0 to 0.

Can we recover the same results for this finer equivalence?

Roadmap:

1. Find a model satisfying the axioms.

2. Prove soundness and completeness.

3. Decide equivalence within that model.

Mission statement

Question
Let ≡0 be like ≡, but without relating e0 to 0.

Can we recover the same results for this finer equivalence?

Roadmap:

1. Find a model satisfying the axioms.

2. Prove soundness and completeness.

3. Decide equivalence within that model.

Guarded trees — informal description

A tree where, for each set of tests α ⊆ T , a node either . . .

I . . . transitions to an “accept” or “reject” leaf node, or

I . . . transitions to another internal node, executing an action p ∈ Σ.

Note: guarded trees may be infinite!

Guarded trees — informal description

A tree where, for each set of tests α ⊆ T , a node either . . .

I . . . transitions to an “accept” or “reject” leaf node, or

I . . . transitions to another internal node, executing an action p ∈ Σ.

Note: guarded trees may be infinite!

Guarded trees — example

∅ | q{b} | p

∅ | q{b} | p

∅ | q...
{b}

{b}

{b}

Expressions to trees — base case

{b0, b1, ...}

1

− | p
a = {b0, b1, ...} 7→ p ∈ Σ 7→

Expressions to trees — Party hat diagrams

{b} | p ∅ | q {b} | r ∅ | s {b} | p ∅ | s

+b =

Expressions to trees — Party hat diagrams

{b} | p ∅ | q

· =

∅ | p
{b}

∅

∅ | q{b} | p

∅ | q

Expressions to trees — Party hat diagrams

{b}

()(b)

=

{b} | p

{b} | p

{b} | p

∅

{b} | p

∅

∅

...

A model in terms of guarded trees

Every expression e has an associated guarded tree JeK.

The early termination axiom does not hold: Je0K 6= J0K.

Question (Soundness & Completeness)

Is e ≡0 f equivalent to JeK = JfK?

Question (Decidability)

Can we decide whether JeK = JfK?

A model in terms of guarded trees

Every expression e has an associated guarded tree JeK.

The early termination axiom does not hold: Je0K 6= J0K.

Question (Soundness & Completeness)

Is e ≡0 f equivalent to JeK = JfK?

Question (Decidability)

Can we decide whether JeK = JfK?

A model in terms of guarded trees

Every expression e has an associated guarded tree JeK.

The early termination axiom does not hold: Je0K 6= J0K.

Question (Soundness & Completeness)

Is e ≡0 f equivalent to JeK = JfK?

Question (Decidability)

Can we decide whether JeK = JfK?

A model in terms of guarded trees

Every expression e has an associated guarded tree JeK.

The early termination axiom does not hold: Je0K 6= J0K.

Question (Soundness & Completeness)

Is e ≡0 f equivalent to JeK = JfK?

Question (Decidability)

Can we decide whether JeK = JfK?

Establishing completeness and decidability

Theorem (Soundness & Completeness)

e ≡0 f if and only if JeK = JfK

Theorem (Decidability for trees)

It is decidable whether JeK = JfK.

Corollary (Decidability for terms)

It is decidable whether e ≡0 f

Note: decision procedures are nearly linear — actually feasible!

The “old” results from (Smolka et al. 2020) can be recovered from these.

Establishing completeness and decidability

Theorem (Soundness & Completeness)

e ≡0 f if and only if JeK = JfK

Theorem (Decidability for trees)

It is decidable whether JeK = JfK.

Corollary (Decidability for terms)

It is decidable whether e ≡0 f

Note: decision procedures are nearly linear — actually feasible!

The “old” results from (Smolka et al. 2020) can be recovered from these.

Establishing completeness and decidability

Theorem (Soundness & Completeness)

e ≡0 f if and only if JeK = JfK

Theorem (Decidability for trees)

It is decidable whether JeK = JfK.

Corollary (Decidability for terms)

It is decidable whether e ≡0 f

Note: decision procedures are nearly linear — actually feasible!

The “old” results from (Smolka et al. 2020) can be recovered from these.

Establishing completeness and decidability

Theorem (Soundness & Completeness)

e ≡0 f if and only if JeK = JfK

Theorem (Decidability for trees)

It is decidable whether JeK = JfK.

Corollary (Decidability for terms)

It is decidable whether e ≡0 f

Note: decision procedures are nearly linear — actually feasible!

The “old” results from (Smolka et al. 2020) can be recovered from these.

Establishing completeness and decidability

Theorem (Soundness & Completeness)

e ≡0 f if and only if JeK = JfK

Theorem (Decidability for trees)

It is decidable whether JeK = JfK.

Corollary (Decidability for terms)

It is decidable whether e ≡0 f

Note: decision procedures are nearly linear — actually feasible!

The “old” results from (Smolka et al. 2020) can be recovered from these.

Expressiveness

Question
Let t be a guarded tree with finitely many
distinct subtrees.

Is there an e such that JeK = t?

Reason: our syntax does not have goto.
Only structured programs!

`0 :if b then p; goto `1 else accept

`1 :if b then q; goto `0 else accept

Not in general — for instance:

∅
{b}
| p

∅ | q

...

{b}

∅
{b}
| p

∅ | q

{b}

See also (Kozen and Tseng 2008).

Expressiveness

Question
Let t be a guarded tree with finitely many
distinct subtrees.

Is there an e such that JeK = t?

Reason: our syntax does not have goto.
Only structured programs!

`0 :if b then p; goto `1 else accept

`1 :if b then q; goto `0 else accept

Not in general — for instance:

∅
{b}
| p

∅ | q

...

{b}

∅
{b}
| p

∅ | q

{b}

See also (Kozen and Tseng 2008).

Expressiveness

Question
Let t be a guarded tree with finitely many
distinct subtrees.

Is there an e such that JeK = t?

Reason: our syntax does not have goto.
Only structured programs!

`0 :if b then p; goto `1 else accept

`1 :if b then q; goto `0 else accept

Not in general — for instance:

∅
{b}
| p

∅ | q

...

{b}

∅
{b}
| p

∅ | q

{b}

See also (Kozen and Tseng 2008).

Expressiveness

Question
Let t be a guarded tree with finitely many
distinct subtrees.

Is there an e such that JeK = t?

Reason: our syntax does not have goto.
Only structured programs!

`0 :if b then p; goto `1 else accept

`1 :if b then q; goto `0 else accept

Not in general — for instance:

∅
{b}
| p

∅ | q

...

{b}

∅
{b}
| p

∅ | q

{b}

See also (Kozen and Tseng 2008).

Further work

Question
Is it decidable whether, given a tree t, there exists an e such that JeK = t?

Question
Can we identify rejection and looping without identifying early/late rejection?

What would be the appropriate axioms for such a semantics?

Further work

Question
Is it decidable whether, given a tree t, there exists an e such that JeK = t?

Question
Can we identify rejection and looping without identifying early/late rejection?

What would be the appropriate axioms for such a semantics?

Thank you

https://kap.pe/slides

https://doi.org/10.4230/LIPIcs.ICALP.2021.142

https://kap.pe/slides
https://doi.org/10.4230/LIPIcs.ICALP.2021.142

Bonus — Reduction to KAT

Syntax is special case of Kleene Algebra with Tests (KAT):

if a then e else f end 7→ a · e + a · f

while a do e end 7→ (a · e)∗ · a

Known results:

I There is a “nice” set of axioms for KAT.

I Soundness & completeness for a straightforward model.

I Equivalence according to these axioms is decidable.

Bonus — Reduction to KAT

Syntax is special case of Kleene Algebra with Tests (KAT):

if a then e else f end 7→ a · e + a · f

while a do e end 7→ (a · e)∗ · a

Known results:

I There is a “nice” set of axioms for KAT.

I Soundness & completeness for a straightforward model.

I Equivalence according to these axioms is decidable.

Bonus — Reduction to KAT

Equivalence in KAT is pspace-complete (Cohen, Kozen, and Smith 1996).

But for practical inputs, good algorithms scale well — e.g., (Foster et al. 2015):

Bonus — Reduction to KAT

Equivalence in KAT is pspace-complete (Cohen, Kozen, and Smith 1996).

But for practical inputs, good algorithms scale well — e.g., (Foster et al. 2015):

References

Ernie Cohen, Dexter Kozen, and Frederick Smith (July 1996). The Complexity of
Kleene Algebra with Tests. Tech. rep. TR96-1598. Cornell University. handle:
1813/7253.
Nate Foster et al. (2015). “A Coalgebraic Decision Procedure for NetKAT”. In:
POPL, pp. 343–355. doi: 10.1145/2676726.2677011.
Dexter Kozen and Wei-Lung (Dustin) Tseng (2008). “The Böhm-Jacopini
Theorem is False, Propositionally”. In: MPC, pp. 177–192. doi:
10.1007/978-3-540-70594-9_11.
Konstantinos Mamouras (2017). “Equational Theories of Abnormal Termination
Based on Kleene Algebra”. In: FOSSACS. Vol. 10203. Lecture Notes in Computer
Science, pp. 88–105. doi: 10.1007/978-3-662-54458-7_6.
Steffen Smolka et al. (Jan. 2020). “Guarded Kleene Algebra with Tests:
Verification of Uninterpreted Programs in Nearly Linear Time”. In: POPL. doi:
10.1145/3371129.

1813/7253
https://doi.org/10.1145/2676726.2677011
https://doi.org/10.1007/978-3-540-70594-9_11
https://doi.org/10.1007/978-3-662-54458-7_6
https://doi.org/10.1145/3371129

	References

