Associativity, monads, and diagrams

Tobias Kappé

JNF Group Score - March 29, 2021

Associativity

$$
\odot: X \times X \rightarrow X
$$

Associativity

$$
\odot: X \times X \rightarrow X \quad x_{1} \odot\left(x_{2} \odot x_{3}\right)=\left(x_{1} \odot x_{2}\right) \odot x_{3}
$$

Associativity

$$
\odot: X \times X \rightarrow X \quad x_{1} \odot\left(x_{2} \odot x_{3}\right)=\left(x_{1} \odot x_{2}\right) \odot x_{3}
$$

$$
\begin{aligned}
& (X \times X) \times X \xrightarrow{\alpha} X \times(X \times X) \\
& \odot \times \text { id } \mid \\
& \quad X \times X \longrightarrow \odot \underset{\odot}{\rightleftarrows} X \times X
\end{aligned}
$$

Associativity

$$
\odot: X \times X \rightarrow X \quad x_{1} \odot\left(x_{2} \odot x_{3}\right)=\left(x_{1} \odot x_{2}\right) \odot x_{3}
$$

$$
\begin{aligned}
& (X \times X) \times X \xrightarrow{\alpha} X \times(X \times X) \\
& \odot \times \text { id } \downarrow \quad \downarrow \text { id } \times \odot \\
& X \times X \longrightarrow \underset{\odot}{\rightleftarrows} X \times X
\end{aligned}
$$

Adding a monad

$$
\odot: X \times X \rightarrow T X \quad T X X T X \rightarrow T X
$$

Adding a monad

$$
\odot: X \times X \rightarrow T X \quad \hat{\odot}: T X \times T X \rightarrow T X
$$

$T X \times T X \xrightarrow{\psi}$	$T(X \times X) \xrightarrow{T \odot} T^{2} X \xrightarrow{\mu} T X$
"pair of sets" "set of pairs" "set of sets" "set"	

Adding a monad

$$
\begin{gathered}
\odot: X \times X \rightarrow T X \\
T X \times T X \xrightarrow{\psi} T(X \times X) \xrightarrow{T} T X: T X \times T X \rightarrow T X \\
\text { "pair of sets" } T T^{2} X \xrightarrow{\mu} T X \\
\text { "set of pairs" } \quad \text { "set of sets" "set" }
\end{gathered}
$$

Lifted associativity

The inner diagram

Theorem

$\hat{\ominus}$ is associative iff the following commutes:

The inner diagram

Theorem

$\widehat{\ominus}$ is associative iff the following commutes:

If T is the powerset monad:

$$
\begin{aligned}
& \frac{x_{1,2} \in x_{1} \odot x_{2} \quad x \in x_{1,2} \odot x_{3}}{\exists x_{2,3} \in x_{2} \odot x_{3} .} x \in x_{1} \odot x_{2,3} \\
& \frac{x_{2,3} \in x_{2} \odot x_{3} \quad x \in x_{1} \odot x_{2,3}}{\exists x_{1,2} \in x_{1} \odot x_{2} .} x \in x_{1,2} \odot x_{3}
\end{aligned}
$$

Theorem

$\widehat{\bigodot}$ is associative iff the following commutes:

If T is the powerset monad:

$$
\begin{aligned}
& \frac{x_{1,2} \in x_{1} \odot x_{2} \quad x \in x_{1,2} \odot x_{3}}{\exists x_{2,3} \in x_{2} \odot x_{3} .} x \in x_{1} \odot x_{2,3} \\
& \frac{x_{2,3} \in x_{2} \odot x_{3} \quad x \in x_{1} \odot x_{2,3}}{\exists x_{1,2} \in x_{1} \odot x_{2} .} x \in x_{1,2} \odot x_{3}
\end{aligned}
$$

Similar conditions for multisets, probability, etc.

