

Completeness for Concurrent Kleene Algebra

Tobias Kappé¹ Paul Brunet¹ Alexandra Silva¹ Fabio Zanasi¹

¹University College London

NII Logic Seminar

Kleene Algebra models program flow.

- abort (0) and skip (1)
- atomic actions (a, b, ...)
- non-deterministic choice (+)
- sequential composition (·)
- indefinite repetition (*)

$$(\mathbf{e} + \mathbf{f})^* \equiv_{\mathsf{KA}} \mathbf{e}^* \cdot (\mathbf{f} \cdot \mathbf{e}^*)^*$$

Kleene Algebra models program flow.

- abort (0) and skip (1)
- atomic actions (a, b, ...)
- non-deterministic choice (+)
- sequential composition (·)
- indefinite repetition (*)

Thread 1	Thread 2
а	С
b	d

Kleene Algebra models program flow.

- abort (0) and skip (1)
- atomic actions (a, b, ...)
- non-deterministic choice (+)
- sequential composition (·)
- indefinite repetition (*)

Thread 1	Thread 2
а	С
b	d
$\underbrace{(a \cdot b) \ (c \cdot d)}$	

Concurrent KA¹ adds parallel composition (||)

¹Hoare, Möller, Struth, and Wehrman 2009

KA is well-studied:

- Decision procedures
- Coalgebra, automata
- Axiomatisation of equivalence

[Hopcroft and Karp 1971; Bonchi and Pous 2013]

[Kleene 1956; Brzozowski 1964; Silva 2010]

[Salomaa 1966; Conway 1971; Kozen 1994]

KA is well-studied:

- Decision procedures
- Coalgebra, automata
- Axiomatisation of equivalence

CKA is a work in progress:

- Decision procedures
- Coalgebra, automata
- Axiomatisation of equivalence

[Hopcroft and Karp 1971; Bonchi and Pous 2013]

[Kleene 1956; Brzozowski 1964; Silva 2010]

[Salomaa 1966; Conway 1971; Kozen 1994]

[Brunet, Pous, and Struth 2017]

[K., Brunet, Luttik, Silva, and Zanasi 2017]

[Gischer 1988; Laurence and Struth 2014]

Theorem (Kozen 1994)

The axioms for KA are complete for equivalence:

$$e \equiv_{\mathsf{KA}} f \iff \llbracket e \rrbracket_{\mathsf{KA}} = \llbracket f \rrbracket_{\mathsf{KA}}$$

 $[-]_{KA}$ is the regular language interpretation of e.

Theorem (Kozen 1994)

The axioms for KA are complete for equivalence:

$$oldsymbol{e} \equiv_{\mathsf{KA}} f \iff \llbracket oldsymbol{e}
rbracket_{\mathsf{KA}} = \llbracket f
rbracket_{\mathsf{KA}}$$

 $[-]_{KA}$ is the regular language interpretation of e.

Question

Can we find axioms for CKA that are complete for equivalence? That is,

$$e \equiv_{\mathsf{CKA}} f \overset{?}{\Longleftrightarrow} \llbracket e \rrbracket_{\mathsf{CKA}} = \llbracket f \rrbracket_{\mathsf{CKA}}$$

 $[-]_{CKA}$ is a generalized regular language interpretation of e.

Pomset: "word with parallelism"

Pomset: "word with parallelism"

$$a \cdot (b \parallel c) \cdot d = a$$

Pomset language: set of pomsets

Pomset: "word with parallelism"

- Pomset language: set of pomsets
- Composition lifts:

 - $\blacksquare \mathcal{U} \parallel \mathcal{V} = \{ U \parallel V : U \in \mathcal{U}, V \in \mathcal{V} \}$

Pomset: "word with parallelism"

- Pomset language: set of pomsets
- Composition lifts:

 - $\blacksquare \mathcal{U} \parallel \mathcal{V} = \{ U \parallel V : U \in \mathcal{U}, V \in \mathcal{V} \}$
- Kleene star: $\mathcal{U}^* = \bigcup_{n < \omega} \mathcal{U}^n$

 $\ensuremath{\mathfrak{T}}$ is the set generated by the grammar

$$e, f := 0 \mid 1 \mid a \in \Sigma \mid e + f \mid e \cdot f \mid e \mid f \mid e^*$$

 ${\mathcal T}$ is the set generated by the grammar

$$e, f := 0 \mid 1 \mid a \in \Sigma \mid e + f \mid e \cdot f \mid e \parallel f \mid e^*$$

BKA semantics is given by
$$\llbracket - \rrbracket_{\mathsf{BKA}} : \mathfrak{T} \to 2^{\mathsf{Pom}_{\Sigma}}$$
.
$$\llbracket 0 \rrbracket_{\mathsf{BKA}} = \emptyset$$

$$\llbracket 1 \rrbracket_{\mathsf{BKA}} = \{1\}$$

$$\llbracket a \rrbracket_{\mathsf{BKA}} = \{a\}$$

$$\llbracket e + f \rrbracket_{\mathsf{BKA}} = \llbracket e \rrbracket_{\mathsf{BKA}} \cup \llbracket f \rrbracket_{\mathsf{BKA}}$$

$$\llbracket e \cdot f \rrbracket_{\mathsf{BKA}} = \llbracket e \rrbracket_{\mathsf{BKA}} \cdot \llbracket f \rrbracket_{\mathsf{BKA}}$$

$$\llbracket e \parallel f \rrbracket_{\mathsf{BKA}} = \llbracket e \rrbracket_{\mathsf{BKA}} \parallel \llbracket f \rrbracket_{\mathsf{BKA}} = \llbracket e \rrbracket_{\mathsf{B$$

$$e + 0 \equiv_{\mathsf{BKA}} e \qquad e \cdot 1 \equiv_{\mathsf{BKA}} e \equiv_{\mathsf{BKA}} 1 \cdot e \qquad e \cdot 0 \equiv_{\mathsf{BKA}} 0 \cdot e$$

$$e + e \equiv_{\mathsf{BKA}} e \qquad e + f \equiv_{\mathsf{BKA}} f + e \qquad e + (f + g) \equiv_{\mathsf{BKA}} (f + g) + h$$

$$e \cdot (f \cdot g) \equiv_{\mathsf{BKA}} (e \cdot f) \cdot g \qquad e \cdot (f + g) \equiv_{\mathsf{BKA}} e \cdot f + e \cdot h \qquad (e + f) \cdot g \equiv_{\mathsf{BKA}} e \cdot g + f \cdot g$$

$$1 + e \cdot e^* \equiv_{\mathsf{BKA}} e^* \qquad e \cdot f + g \leqq_{\mathsf{BKA}} f \implies e^* \cdot g \leqq_{\mathsf{BKA}} f$$

$$e \parallel f \equiv_{\mathsf{BKA}} f \parallel e \qquad e \parallel 1 \equiv_{\mathsf{BKA}} e \qquad e \parallel 0 \equiv_{\mathsf{BKA}} 0$$

$$e \parallel (f \parallel g) \equiv_{\mathsf{BKA}} (e \parallel f) \parallel g \qquad e \parallel (f + g) \equiv_{\mathsf{BKA}} e \parallel f + e \parallel g$$

$$e + 0 \equiv_{\mathsf{BKA}} e \qquad e \cdot 1 \equiv_{\mathsf{BKA}} e \equiv_{\mathsf{BKA}} 1 \cdot e \qquad e \cdot 0 \equiv_{\mathsf{BKA}} 0 \cdot e$$

$$e + e \equiv_{\mathsf{BKA}} e \qquad e + f \equiv_{\mathsf{BKA}} f + e \qquad e + (f + g) \equiv_{\mathsf{BKA}} (f + g) + h$$

$$e \cdot (f \cdot g) \equiv_{\mathsf{BKA}} (e \cdot f) \cdot g \qquad e \cdot (f + g) \equiv_{\mathsf{BKA}} e \cdot f + e \cdot h \qquad (e + f) \cdot g \equiv_{\mathsf{BKA}} e \cdot g + f \cdot g$$

$$1 + e \cdot e^* \equiv_{\mathsf{BKA}} e^* \qquad e \cdot f + g \leq_{\mathsf{BKA}} f \implies e^* \cdot g \leq_{\mathsf{BKA}} f$$

$$e \parallel f \equiv_{\mathsf{BKA}} f \parallel e \qquad e \parallel 1 \equiv_{\mathsf{BKA}} e \qquad e \parallel 0 \equiv_{\mathsf{BKA}} 0$$

$$e \parallel (f \parallel g) \equiv_{\mathsf{BKA}} (e \parallel f) \parallel g \qquad e \parallel (f + g) \equiv_{\mathsf{BKA}} e \parallel f + e \parallel g$$

$$e + 0 \equiv_{\mathsf{BKA}} e \qquad e \cdot 1 \equiv_{\mathsf{BKA}} e \equiv_{\mathsf{BKA}} 1 \cdot e \qquad e \cdot 0 \equiv_{\mathsf{BKA}} 0 \cdot e$$

$$e + e \equiv_{\mathsf{BKA}} e \qquad e + f \equiv_{\mathsf{BKA}} f + e \qquad e + (f + g) \equiv_{\mathsf{BKA}} (f + g) + h$$

$$e \cdot (f \cdot g) \equiv_{\mathsf{BKA}} (e \cdot f) \cdot g \qquad e \cdot (f + g) \equiv_{\mathsf{BKA}} e \cdot f + e \cdot h \qquad (e + f) \cdot g \equiv_{\mathsf{BKA}} e \cdot g + f \cdot g$$

$$1 + e \cdot e^* \equiv_{\mathsf{BKA}} e^* \qquad e \cdot f + g \leqq_{\mathsf{BKA}} f \implies e^* \cdot g \leqq_{\mathsf{BKA}} f$$

$$e \parallel f \equiv_{\mathsf{BKA}} f \parallel e \qquad e \parallel 1 \equiv_{\mathsf{BKA}} e \qquad e \parallel 0 \equiv_{\mathsf{BKA}} 0$$

$$e \parallel (f \parallel g) \equiv_{\mathsf{BKA}} (e \parallel f) \parallel g \qquad e \parallel (f + g) \equiv_{\mathsf{BKA}} e \parallel f + e \parallel g$$

$$e + 0 \equiv_{\mathsf{BKA}} e \qquad e \cdot 1 \equiv_{\mathsf{BKA}} e \equiv_{\mathsf{BKA}} 1 \cdot e \qquad e \cdot 0 \equiv_{\mathsf{BKA}} 0 \cdot e$$

$$e + e \equiv_{\mathsf{BKA}} e \qquad e + f \equiv_{\mathsf{BKA}} f + e \qquad e + (f + g) \equiv_{\mathsf{BKA}} (f + g) + h$$

$$e \cdot (f \cdot g) \equiv_{\mathsf{BKA}} (e \cdot f) \cdot g \qquad e \cdot (f + g) \equiv_{\mathsf{BKA}} e \cdot f + e \cdot h \qquad (e + f) \cdot g \equiv_{\mathsf{BKA}} e \cdot g + f \cdot g$$

$$1 + e \cdot e^* \equiv_{\mathsf{BKA}} e^* \qquad e \cdot f + g \leqq_{\mathsf{BKA}} f \implies e^* \cdot g \leqq_{\mathsf{BKA}} f$$

$$e \parallel f \equiv_{\mathsf{BKA}} f \parallel e \qquad e \parallel 1 \equiv_{\mathsf{BKA}} e \qquad e \parallel 0 \equiv_{\mathsf{BKA}} 0$$

$$e \parallel (f \parallel g) \equiv_{\mathsf{BKA}} (e \parallel f) \parallel g \qquad e \parallel (f + g) \equiv_{\mathsf{BKA}} e \parallel f + e \parallel g$$

$$e + 0 \equiv_{\mathsf{BKA}} e \qquad e \cdot 1 \equiv_{\mathsf{BKA}} e \equiv_{\mathsf{BKA}} 1 \cdot e \qquad e \cdot 0 \equiv_{\mathsf{BKA}} 0 \cdot e$$

$$e + e \equiv_{\mathsf{BKA}} e \qquad e + f \equiv_{\mathsf{BKA}} f + e \qquad e + (f + g) \equiv_{\mathsf{BKA}} (f + g) + h$$

$$e \cdot (f \cdot g) \equiv_{\mathsf{BKA}} (e \cdot f) \cdot g \qquad e \cdot (f + g) \equiv_{\mathsf{BKA}} e \cdot f + e \cdot h \qquad (e + f) \cdot g \equiv_{\mathsf{BKA}} e \cdot g + f \cdot g$$

$$1 + e \cdot e^* \equiv_{\mathsf{BKA}} e^* \qquad e \cdot f + g \leq_{\mathsf{BKA}} f \implies e^* \cdot g \leq_{\mathsf{BKA}} f$$

$$e \parallel f \equiv_{\mathsf{BKA}} f \parallel e \qquad e \parallel 1 \equiv_{\mathsf{BKA}} e \qquad e \parallel 0 \equiv_{\mathsf{BKA}} 0$$

$$e \parallel (f \parallel g) \equiv_{\mathsf{BKA}} (e \parallel f) \parallel g \qquad e \parallel (f + g) \equiv_{\mathsf{BKA}} e \parallel f + e \parallel g$$

Theorem (Laurence and Struth 2014)

The axioms for BKA are complete for equivalence:

$$oldsymbol{e} \equiv_{ extsf{BKA}} f \iff \llbracket oldsymbol{e}
bracket_{ extsf{BKA}} = \llbracket f
bracket_{ extsf{BKA}}$$

Pomset subsumption:

$$\begin{array}{ccc}
a \longrightarrow c & a \longrightarrow c \\
\searrow & \sqsubseteq \\
b \longrightarrow d & b \longrightarrow d
\end{array}$$

Pomset subsumption:

$$\begin{array}{ccc}
a \longrightarrow c & a \longrightarrow c \\
\swarrow & \sqsubseteq \\
b \longrightarrow d & b \longrightarrow d
\end{array}$$

 $U \sqsubseteq V$: *U* is "more sequential" than *V*

Pomset subsumption:

$$\begin{array}{ccc}
a \longrightarrow c & a \longrightarrow c \\
\swarrow & \sqsubseteq \\
b \longrightarrow d & b \longrightarrow d
\end{array}$$

 $U \sqsubseteq V$: *U* is "more sequential" than *V*

■ Closure under pomset subsumption: $\mathcal{U}_{\downarrow} = \{U' \sqsubseteq U : U \in \mathcal{U}\}$ \mathcal{U}_{\downarrow} : all "sequentialisations" of pomsets in \mathcal{U} .

■ CKA semantics: $\llbracket e \rrbracket_{\scriptscriptstyle\mathsf{CKA}} = \llbracket e \rrbracket_{\scriptscriptstyle\mathsf{BKA}} \downarrow$.

- CKA semantics: $\llbracket e \rrbracket_{\scriptscriptstyle\mathsf{CKA}} = \llbracket e \rrbracket_{\scriptscriptstyle\mathsf{BKA}} \downarrow$.
- Axioms to build \equiv_{CKA} : all axioms for \equiv_{BKA} , as well as the *exchange law*:

$$(e \parallel f) \cdot (g \parallel h) \leqq_{\mathsf{CKA}} (e \cdot g) \parallel (f \cdot h)$$

- CKA semantics: $\llbracket e \rrbracket_{\text{CKA}} = \llbracket e \rrbracket_{\text{BKA}} \downarrow$.
- Axioms to build \equiv_{CKA} : all axioms for \equiv_{BKA} , as well as the exchange law:

$$(e \parallel f) \cdot (g \parallel h) \leqq_{\mathsf{CKA}} (e \cdot g) \parallel (f \cdot h)$$

Lemma (Hoare, Möller, Struth, and Wehrman 2009)

The axioms of CKA are sound for equivalence, i.e.,

$$oldsymbol{e} \equiv_{ exttt{CKA}} f \implies \llbracket oldsymbol{e}
rbracket_{ exttt{CKA}} = \llbracket f
rbracket_{ exttt{CKA}}$$

Theorem (Kozen 1994)

Let M be an n-by-n matrix over \mathfrak{T} , and \vec{b} an n-dimensional vector over \mathfrak{T} .

Theorem (Kozen 1994)

Let M be an n-by-n matrix over \mathbb{T} , and \vec{b} an n-dimensional vector over \mathbb{T} .

The inequation $M \cdot \vec{x} + \vec{b} \leq_{KA} \vec{x}$ admits a unique least solution (with respect to \leq_{KA}).

This "fixpoint" can be constructed *fully syntactically*.

Theorem (Kozen 1994)

Let M be an n-by-n matrix over \mathcal{T} , and \vec{b} an n-dimensional vector over \mathcal{T} .

- This "fixpoint" can be constructed *fully syntactically*.
- The same works for BKA and CKA.

Theorem (Kozen 1994)

Let M be an n-by-n matrix over \mathfrak{T} , and \vec{b} an n-dimensional vector over \mathfrak{T} .

- This "fixpoint" can be constructed *fully syntactically*.
- The same works for BKA and CKA.
- In fact, the solution is the same in both systems!

Theorem (Kozen 1994)

Let M be an n-by-n matrix over \mathcal{T} , and \vec{b} an n-dimensional vector over \mathcal{T} .

- This "fixpoint" can be constructed *fully syntactically*.
- The same works for BKA and CKA.
- In fact, the solution is the same in both systems!
- We use this as a device to find specific terms later on.

Definition

Let $e \in \mathcal{T}$; a *closure* of e is a term $e \downarrow$ such that

- 1 $e\downarrow \equiv_{\mathsf{CKA}} e$

Definition

Let $e \in \mathcal{T}$; a *closure* of e is a term $e \downarrow$ such that

- 1 $e\downarrow \equiv_{\mathsf{CKA}} e$
- $\llbracket e
 rbracket_{\mathsf{CKA}} = \llbracket e \downarrow
 rbracket_{\mathsf{BKA}}$

Lemma (Laurence & Struth)

If every term e has a closure $e\downarrow$, then $\llbracket e \rrbracket_{\texttt{CKA}} = \llbracket f \rrbracket_{\texttt{CKA}}$ implies $e \equiv_{\texttt{CKA}} f$.

Definition

Let $e \in \mathfrak{T}$; a *closure* of e is a term $e \downarrow$ such that

- $e\downarrow \equiv_{\mathsf{CKA}} e$
- $\llbracket e \rrbracket_{\mathsf{CKA}} = \llbracket e \downarrow \rrbracket_{\mathsf{BKA}}$

Lemma (Laurence & Struth)

If every term e has a closure $e\downarrow$, then $[e]_{CKA} = [f]_{CKA}$ implies $e \equiv_{CKA} f$.

Proof.

Observe that $[e\downarrow]_{BKA} = [f\downarrow]_{BKA}$, and therefore $e\equiv_{CKA} e\downarrow \equiv_{BKA} f\downarrow \equiv_{CKA} f$.

Lemma

If e, f have closures $e \downarrow$ and $f \downarrow$ respectively, then

- $\blacksquare e \downarrow + f \downarrow$ is a closure of e + f
- $e \downarrow \cdot f \downarrow$ is a closure of $e \cdot f$

Lemma

If e, f have closures $e \downarrow$ and $f \downarrow$ respectively, then

- $\bullet \downarrow + f \downarrow$ is a closure of e + f
- $e \downarrow \cdot f \downarrow$ is a closure of $e \cdot f$
- e↓* is a closure of e*

One case remains: parallel composition.

Lemma

If e, f have closures $e \downarrow$ and $f \downarrow$ respectively, then

- $\bullet \downarrow + f \downarrow$ is a closure of e + f
- $e \downarrow \cdot f \downarrow$ is a closure of $e \cdot f$

One case remains: parallel composition.

Induction hypothesis: for $e \in \mathcal{T}$, we assume that:

- If f is a strict subterm of e, we can construct $f \downarrow$.
- If |f| < |e| we can construct $f \downarrow$.²

 $^{^{2}|}e|$ is the nesting level e w.r.t. \parallel

Preclosure

A *preclosure* is almost a closure, but not quite.

Definition

Let $e \in \mathcal{T}$. A *preclosure* of e is a term $\tilde{e} \in \mathcal{T}$ such that

- $\tilde{e} \equiv_{\mathsf{CKA}} e.$
- $oxed{2}$ if $U \in \llbracket e
 bracket_{ exttt{CKA}}$ is non-sequential, then $U \in \llbracket ilde{e}
 bracket_{ exttt{BKA}}$

Preclosure

Definition

Let $e \in \mathcal{T}$; Δ_e is the smallest relation on \mathcal{T} such that

$$\frac{1}{1} \frac{1}{\Delta_{e}} \frac{1}{e} \frac{\frac{\ell \Delta_{e_0} r}{\ell \Delta_{e_1 + e_0} r}}{\frac{\ell \Delta_{e_1} r}{\ell \Delta_{e_0 + e_1} r}} \frac{\frac{\ell \Delta_{e} r}{\ell \Delta_{e_0 + e_1} r}}{\frac{\ell \Delta_{e} r}{\ell \Delta_{e^*} r}}$$

$$\frac{\ell \Delta_{e_0} r}{\ell \Delta_{e_0 \cdot e_1} r} \frac{1 \in \llbracket e_0 \rrbracket_{\text{CKA}}}{\ell \Delta_{e_0 \cdot e_1} r} \frac{\ell \Delta_{e_0} r}{\ell \Delta_{e_0 \cdot e_1} r} \frac{\ell \Delta_{e_0} r}{\ell \Delta_{e_0 \mid e_1} r} \frac{\ell \Delta_{e_1} r}{\ell \Delta_{e_0} \ell} \frac{\ell \Delta_{e_$$

Lemma

 $\textit{Let V, W} \neq \textit{1, e} \in \mathcal{T}, \textit{and V} \parallel \textit{W} \in \llbracket \textit{e} \rrbracket_{\mathsf{BKA}}; \textit{there exist } \ell \mathrel{\Delta_{e}} \textit{r with V} \in \llbracket \ell \rrbracket_{\mathsf{BKA}} \textit{ and W} \in \llbracket \textit{r} \rrbracket_{\mathsf{BKA}}.$

Preclosure

Definition

Let $e, f \in \mathcal{T}$; the term $e \odot f$ is defined as follows:

$$e\odot f riangleq e\parallel f+\sum_{\substack{\ell\Delta_{e\parallel f}r\ |\ell|,|r|<|e\|f|}}\ell\downarrow\parallel r\downarrow$$

Lemma

Let $e, f \in \mathfrak{I}$; then

- $\blacksquare e \odot f \equiv_{\mathsf{CKA}} e \parallel f$
- $[\]$ if $U \in [\ [\ e \ | \ f]]_{CKA}$ is non-sequential, then $U \in [\ [\ e \odot f]]_{BKA}$

That is, $e \odot f$ is a preclosure of $e \parallel f$.

Sketch: given $e \parallel f$, apply exchange law syntactically, "in the limit".

Sketch: given $e \parallel f$, apply exchange law syntactically, "in the limit".

For instance: if $e = a \cdot b$ and $f = c \cdot d$:

$$\blacksquare$$
 $(a \parallel c) \cdot (b \parallel d) \leq_{\mathsf{CKA}} e \parallel f$

$$(e = a \bullet b, f = c \bullet d)$$

Sketch: given $e \parallel f$, apply exchange law syntactically, "in the limit".

For instance: if $e = a \cdot b$ and $f = c \cdot d$:

$$\blacksquare$$
 $(a \parallel c) \cdot (b \parallel d) \leq_{CKA} e \parallel f$

$$\blacksquare a \cdot (b \parallel (c \cdot d)) \leq_{CKA} e \parallel f$$

$$(e = a \bullet b, f = c \bullet d)$$

$$(e = a \bullet b, f = 1 \bullet c \cdot d)$$

Sketch: given $e \parallel f$, apply exchange law syntactically, "in the limit".

For instance: if $e = a \cdot b$ and $f = c \cdot d$:

$$\blacksquare a \cdot (b \parallel (c \cdot d)) \leq_{CKA} e \parallel f$$

$$\mathbf{c} \cdot ((\mathbf{a} \cdot \mathbf{b}) \parallel \mathbf{d}) \leq_{\mathsf{CKA}} \mathbf{e} \parallel \mathbf{f}$$

$$(e = a \bullet b, f = c \bullet d)$$

$$(e = a \bullet b, f = 1 \bullet c \cdot d)$$

$$(e = 1 \bullet a \cdot b, f = c \bullet d)$$

Sketch: given $e \parallel f$, apply exchange law syntactically, "in the limit".

For instance: if $e = a \cdot b$ and $f = c \cdot d$:

$$\blacksquare a \cdot (b \parallel (c \cdot d)) \leq_{\mathsf{CKA}} e \parallel f$$

$$\mathbf{c} \cdot ((\mathbf{a} \cdot \mathbf{b}) \parallel \mathbf{d}) \leq_{\mathsf{CKA}} \mathbf{e} \parallel \mathbf{f}$$

$$(e = a \bullet b, f = c \bullet d)$$

$$(e = a \bullet b, f = 1 \bullet c \cdot d)$$

$$(e = 1 \bullet a \cdot b, f = c \bullet d)$$

Goal: find enough of these terms to cover all pomsets in $[e \parallel f]_{CKA}$.

Obstacles to overcome:

■ How to split terms *e* and *f* into heads and tails?

Obstacles to overcome:

- How to split terms *e* and *f* into heads and tails?
- What to do about recursion? For instance,

$$(e \parallel f) \cdot (e^* \parallel f^*) \leqq_{\mathsf{CKA}} e^* \parallel f^*$$

Obstacles to overcome:

- How to split terms *e* and *f* into heads and tails?
- What to do about recursion? For instance,

$$(e \parallel f) \cdot (e^* \parallel f^*) \leq_{\mathsf{CKA}} e^* \parallel f^*$$

splicing relations

Obstacles to overcome:

- How to split terms *e* and *f* into heads and tails?
- What to do about recursion? For instance,

splicing relations

fixpoints of inequations

$$(e \parallel f) \cdot (e^* \parallel f^*) \leqq_{\mathsf{CKA}} e^* \parallel f^*$$

Definition

Let $e \in \mathcal{T}$. We define $\nabla_e \subseteq \mathcal{T} \times \mathcal{T}$ as the smallest relation such that

$$\frac{1}{1} \frac{1}{\nabla_{1} 1} \frac{1}{a} \frac{1}{\nabla_{a} 1} \frac{1}{1} \frac{\ell \nabla_{e} r}{\ell \nabla_{e+f} r} \frac{\ell \nabla_{e} r}{\ell \nabla_{e+f} r} \frac{\ell \nabla_{f} r}{\ell \nabla_{e+f} r}$$

$$\frac{\ell \nabla_{e} r}{\ell \nabla_{e \cdot f} r \cdot f} \frac{\ell \nabla_{f} r}{e \cdot \ell \nabla_{e \cdot f} r} \frac{\ell_{0} \nabla_{e} r_{0} \ell_{1} \nabla_{f} r_{1}}{\ell_{0} \| \ell_{1} \nabla_{e \| f} r_{0} \| r_{1}} \frac{\ell \nabla_{e} r}{e^{*} \cdot \ell \nabla_{e^{*}} r \cdot e^{*}}$$

Lemma

Let $e \in \mathfrak{T}$ and $U \cdot V \in \llbracket e \rrbracket_{\mathsf{WCKA}}$; there exist $\ell \nabla_e r$ such that $U \in \llbracket \ell \rrbracket_{\mathsf{CKA}}$ and $V \in \llbracket r \rrbracket_{\mathsf{CKA}}$.

Suppose that for all $g, h \in \mathcal{T}$, we have that $X_{g||h}$ is a closure of g || h.

Then we find

$$e \parallel f + \sum_{\substack{\ell_e \ \nabla_e \ r_e \\ \ell_f \ \nabla_f \ r_f}} (\ell_e \parallel \ell_f) \cdot (r_e \parallel r_f) \leqq_{\mathsf{CKA}} X_{e \parallel f}$$

Suppose that for all $g, h \in \mathcal{T}$, we have that $X_{g \parallel h}$ is a closure of $g \parallel h$.

Then we find

$$e \parallel f + \sum_{\substack{\ell_e \ \nabla_e \ r_e \\ \ell_f \ \nabla_f \ r_f}} (\ell_e \odot \ell_f) \cdot (r_e \parallel r_f) \leqq_{\mathsf{CKA}} X_{e \parallel f}$$

Suppose that for all $g, h \in \mathcal{T}$, we have that $X_{g||h}$ is a closure of g || h.

Then we find

$$e \parallel f + \sum_{\substack{\ell_{e} \ \nabla_{e} \ r_{e} \\ \ell_{f} \ \nabla_{f} \ r_{f}}} (\ell_{e} \odot \ell_{f}) \cdot X_{r_{e} \parallel r_{f}} \leqq_{\mathsf{CKA}} X_{e \parallel f}$$

Suppose that for all $g, h \in \mathcal{T}$, we have that $X_{g \parallel h}$ is a closure of $g \parallel h$.

Then we find

$$e \parallel f + \sum_{\substack{\ell_e \ \nabla_e \ r_e \\ \ell_f \ \nabla_f \ r_f}} (\ell_e \odot \ell_f) \cdot X_{r_e \parallel r_f} \leqq_{\mathsf{CKA}} X_{e \parallel f}$$

For $X_{r_e||r_f}$, we find another inequation, et cetera...

Suppose that for all $g, h \in \mathcal{T}$, we have that $X_{g \parallel h}$ is a closure of $g \parallel h$.

Then we find

$$e \parallel f + \sum_{\substack{\ell_e \ \nabla_e \ r_e \\ \ell_f \ \nabla_f \ r_f}} (\ell_e \odot \ell_f) \cdot X_{r_e \parallel r_f} \leqq_{\mathsf{CKA}} X_{e \parallel f}$$

For $X_{r_e||r_f}$, we find another inequation, et cetera...

Lemma

Continuing this, we get a finite system of inequations $\langle M, \vec{b} \rangle_{e||f}$.

Theorem

Let $e \otimes f$ be the least solution to $X_{e||f}$ in $\langle M, \vec{b} \rangle_{e||f}$. Then the following hold:

In other words, $e \otimes f$ is a closure of $e \parallel f$.

Theorem

Let $e \otimes f$ be the least solution to $X_{e||f}$ in $\langle M, \vec{b} \rangle_{e||f}$. Then the following hold:

In other words, $e \otimes f$ is a closure of $e \parallel f$.

Theorem

If $e \in \mathcal{T}$, then we can compute a term $e \downarrow$ that is a closure of e.

Theorem

Let $e \otimes f$ be the least solution to $X_{e||f}$ in $\langle M, \vec{b} \rangle_{e||f}$. Then the following hold:

In other words, $e \otimes f$ is a closure of $e \parallel f$.

Theorem

If $e \in T$, then we can compute a term $e \downarrow$ that is a closure of e.

Corollary

Let $e, f \in \mathcal{T}$ be such that $\llbracket e \rrbracket_{\mathsf{CKA}} = \llbracket f \rrbracket_{\mathsf{CKA}}$; then $e \equiv_{\mathsf{CKA}} f$.

Conclusion

- Axiomatised equality of closed, rational pomset languages.
- Results establishes these as the carrier of the free CKA.
- Extends half of earlier Kleene theorem: terms to pomset automata.
- We also obtain a novel (but inefficient) decision procedure.

Further work

- Explore coalgebraic perspective:
 - Efficient equivalence checking through bisimulation?
 - Can completeness be shown coalgebraically?
- Add "parallel star" operator closure method does not apply.
- Endgame: lift results to KAT, then NetKAT.

Thank you for your attention

Implementation: https://doi.org/10.5281/zenodo.926651.

Draft paper: https://arxiv.org/abs/1710.02787.