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Introduction

Kleene Algebra models program flow.

abort (0) and skip (1)

atomic actions (a, b, ...)

non-deterministic choice (+) (e+1)" = e (fre)”
sequential composition (+)

indefinite repetition (*)
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Introduction

Kleene Algebra models program flow.
abort (0) and skip (1)

atomic actions (a, b, ...) Thread 1 Thread 2
non-deterministic choice (+) a c
sequential composition (-) b d
indefinite repetition (*) (ab)||(c-d)

Concurrent KA adds parallel composition (||)

"Hoare, Méller, Struth, and Wehrman 2009
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Introduction

KA is well-studied:

Decision procedures [Hopcroft and Karp 1971; Bonchi and Pous 2013]
Coalgebra, automata [Kleene 1956; Brzozowski 1964; Silva 2010]
Axiomatisation of equivalence [Salomaa 1966; Conway 1971; Kozen 1994]
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Introduction

KA is well-studied:

Decision procedures [Hopcroft and Karp 1971; Bonchi and Pous 2013]
Coalgebra, automata [Kleene 1956; Brzozowski 1964; Silva 2010]
Axiomatisation of equivalence [Salomaa 1966; Conway 1971; Kozen 1994]

CKA is a work in progress:

Decision procedures [Brunet, Pous, and Struth 2017]
Coalgebra, automata [K., Brunet, Luttik, Silva, and Zanasi 2017]
Axiomatisation of equivalence [Gischer 1988; Laurence and Struth 2014]
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The axioms for KA are complete for equivalence:

e=nf < [ew = [l

[—I«a is the regular language interpretation of e.



Introduction

Theorem (Kozen 1994)

The axioms for KA are complete for equivalence:
e=wnf < [elx = [fla

[—I«a is the regular language interpretation of e.

Question

Can we find axioms for CKA that are complete for equivalence? That is,

?
€= f [[e]]CKA = [[fﬂCKA
[—Joka is @ generalized regular language interpretation of e.
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- Pomset: “word with parallelism”
/ ’ \
a-(bfc)-d=a d
N .

- Pomset language: set of pomsets

= Composition lifts:
SU-V={U-V:Uel,VeV}

SUV={U| V:UEW VeV

© Kleene star: U* =J,_,, U



T is the set generated by the grammar
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Preliminaries

T is the set generated by the grammar

ef:=01|1]acX | e+fleflel|f]e

BKA semantics is given by [, : T — 2F°m=,

HO]]BKA =0
[[1]]BKA ={1}
[[a]]BKA ={a}

[+ flaka = [Elaa U [Flxa

[[e f]]BKA [[e]]BKA [[f]]BKA

[e [l o = [aa I [Taxa
[[e ]]BKA - He]]BKA
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Axioms for BKA :
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Axioms for BKA :
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Axioms for BKA :
e+ 0 =an € e-1=pgn€=pnl-e € 0=pn0=an0-e
e+ e=gane e+f=gaf+e e+ (f+9) = (F+g)+h

e (f-g) =enle-fl-g e (f+9g)=esne-f+e-h (e+f)-g=ene-g+f-g

1+e-e" =g e e'f+g§BKAf — e*'ggemf
el f=sanfle el|1=sane e[/ 0=en0
el (fllg) =en (el )]l g ell(f+g)=enellf+elg



The axioms for BKA are complete for equivalence:

e =g [ <— [[9]]BKA = [[f]]BKA
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= Pomset subsumption:
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Preliminaries

Pomset subsumption:
a—c a—¢c

X C

b—d b—d
U C V: Uis “more sequential” than V
Closure under pomset subsumption: Ul ={U’' C U: U € U}

UJ: all “sequentialisations” of pomsets in U.
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Preliminaries

CKA semantics: [€] ., = [€]axa 4

Axioms to build =q«,: all axioms for =g, as well as the exchange law:

(el f)- (gl h) Scxa (e-g) || (f-h)

Lemma (Hoare, Mdller, Struth, and Wehrman 2009)

The axioms of CKA are sound for equivalence, i.e.,

e=cn I = IIe]]CKA = HfﬂCKA
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Preliminaries

Theorem (Kozen 1994)
Let M be an n-by-n matrix over T, and b an n-dimensional vector over 7.

The inequation M - X + b <.x X admits a unique least solution (with respect to <g,).
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Preliminaries

Theorem (Kozen 1994)

Let M be an n-by-n matrix over T, and b an n-dimensional vector over 7.

The inequation M - X + b <., X admits a unique least solution (with respect to <a).

This “fixpoint” can be constructed fully syntactically.
The same works for BKA and CKA.
In fact, the solution is the same in both systems!

We use this as a device to find specific terms later on.
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Let e € T; a closure of e is a term e such that

el =c €
[[e]]CKA = IIe‘J’]]BKA
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Closure

Definition
Let e € T; a closure of e is a term e such that
el =cn €

[[e]]CKA = [ed] BKA

Lemma (Laurence & Struth)

If every term e has a closure el, then [€] ., = [f]oa implies € =i f.
Proof.

Observe that [el ]z, = [f]aka> and therefore e =cxa €] =aa fl =cia f-
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If e, f have closures e and f| respectively, then
el + f| is a closure of e + f
el - fl isaclosure ofe- f
el” is a closure of e*



Closure

Lemma

If e, f have closures e and f| respectively, then
el + fl isaclosure of e + f
el -fl isaclosure ofe- f
el* is a closure of e*

One case remains: parallel composition.
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Closure

Lemma

If e, f have closures e and f| respectively, then
el + fl isaclosure ofe + f
el -fl isaclosure ofe- f
el* is a closure of e*

One case remains: parallel composition.

Induction hypothesis: for e € T, we assume that:
If fis a strict subterm of e, we can construct f|.

If || < |e| we can construct f].2

2|¢| is the nesting level e w.r.t. ||
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Preclosure interlude

A preclosure is almost a closure, but not quite.
Definition
Let e € T. A preclosure of e is a term & € T such that
e =cxa €.
if U € [€]n is non-sequential, then U € [&],,
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Preclosure interlude

Definition
Let e € T; Ag is the smallest relation on T such that

CAgy r CAg r LA r

1 Ae e e Ae 1 €A91+eo I’ €A90+e1 I’ eAe* I’
EAQO r 1e [[61]]CKA €Ae1 r 1e [[eo]]CKA L Aeo o {4 Ae1 g
ﬂAeo.e1 r EAeo-e1 r €0 H €1 A6‘0H6‘1 I H £

Lemma
LetV,W #1,ec T,and V || W € €], there existt Ag r with V € [{],,, and W € [r] .-
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Preclosure interlude
Definition
Let e, f € T;the term e ® f is defined as follows:

eof2e|f+ Y

EAerI'
[€].]rI<lel|f]

Lemma
Lete, f € T;then
ecf=xaelf

if U € [e || flo, is non-sequential, then U € [e ® f]g,
That is, e ® f is a preclosure of e || f.
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Sketch: given e || f, apply exchange law syntactically, “in the limit”.
Forinstance:ife=a-band f=c- d:
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Closure

Sketch: given e || f, apply exchange law syntactically, “in the limit”.

For instance:ife=a-bandf=rc- d:

(alle)-(b]|d) =cnelf (e=aeb,f=ced)
a-(b|(c-d))Zcnelf (e=aeb,f=1ec-d)
c-((ab)||d) =caellf (e=1ea-b, f=ced)
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Closure

Sketch: given e || f, apply exchange law syntactically, “in the limit”.
Forinstance:ife=a-bandf=c-d:

(alfc)-(bfld) =caelf

a-(b|(c-d))Zcnelf

c-((ab)|[d)=caelf

(e=aeb,f=ced)
(e=aeb,f=1ec-d)
(e=1ea-b,f=ced)

Goal: find enough of these terms to cover all pomsets in [e || ],,-
T. Kappé, P. Brunet, A. Silva, F. Zanasi
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= How to split terms e and f into heads and tails?
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Closure

Obstacles to overcome:
How to split terms e and f into heads and tails? I’= splicing relations

What to do about recursion? For instance, = fixpoints of inequations

(e 1)-(e" | ") Sca € || 1
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Closure

Definition

Let e € 7. We define Vo C T x T as the smallest relation such that

{Ver LVsr

1V11 aVa1 1Vaa 1Ve*1 BVe+fr ZVe+fr
(%Ver EVfI’ EQVGI’O E1fo1 (%Ver

eve.,«r-f e-(’,Ve.fr (’,0 || €1 Ve”f o H r e*~€Ve* r-e*

Lemma
Letec Tand U- V € €], there exist{ V¢ r such that U € [{],,, and V € [r] -
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Suppose that for all g, h € T, we have that X, is a closure of g || h.

Then we find

el f+ Z (Le [| €r) - (re [l 1) Scxa Xeyjr

e Ve re
b Vir



Suppose that for all g, h € T, we have that X, is a closure of g || h.

Then we find

el f+ Z (Le © L) - (re || 1) Scxa Xer

e Ve e
b Vir



Suppose that for all g, h € T, we have that X, is a closure of g || h.

Then we find
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b Vi



Suppose that for all g, h € T, we have that X, is a closure of g || h.

Then we find

ellf+ Y (Le®l) Xy Sorn Xofr

le Ve re
b Vi

For X, ,» we find another inequation, et cetera. ..



Closure

Suppose that for all g, h € T, we have that X, is a closure of g || h.

Then we find

el f+ Y (Le® ) Xy Soxa Xejr
e Ve re
L Vyre

For X..|,» we find another inequation, et cetera. ..

Lemma

Continuing this, we get a finite system of inequations (M, B>e|\ £
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Lete @ f be the least solution to Xgi in (M, E)e” ¢. Then the following hold:
exf=gae|f
[e® f]]BKA =[ell f]]CKA

In other words, e @ f is a closure of e || f.



Closure

Theorem

Let e @ f be the least solution to X ¢ in (M, B>e|| ¢. Then the following hold:
e ® f ECKA & ” f

[[e® f]]BKA = [[e H f]]cKA
In other words, e @ f is a closure of e || f.

Theorem

If e € T, then we can compute a term e that is a closure of e.
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Closure

Theorem

Let e @ f be the least solution to X ¢ in (M, B>e|| ¢. Then the following hold:

e®fECKAer

[[e® f]]BKA = [[e H f]]CKA
In other words, e @ f is a closure of e || f.

Theorem

If e € T, then we can compute a term e that is a closure of e.

Corollary

Lete, f € T be such that [€] ., = [flokas then € =cua f.
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Conclusion

Axiomatised equality of closed, rational pomset languages.
Results establishes these as the carrier of the free CKA.
Extends half of earlier Kleene theorem: terms to pomset automata.

We also obtain a novel (but inefficient) decision procedure.
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Further work

Explore coalgebraic perspective:
Efficient equivalence checking through bisimulation?

Can completeness be shown coalgebraically?

Add “parallel star” operator — closure method does not apply.

Endgame: lift results to KAT, then NetKAT.
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Thank you for your attention

GoNeGo

Implementation: https://doi.org/10.5281/zenodo.926651.

Draft paper: https://arxiv.org/abs/1710.02787.


https://doi.org/10.5281/zenodo.926651
https://arxiv.org/abs/1710.02787
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