Decidability for Clark-congruential CFGs

Tobias Kappé Makoto Kanazawa

NII Logic Seminar, January 10, 2018

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ▶

Context Free Grammars are surrounded by undecidable questions:

- Universality
- Equivalence
- Congruence

These are all decidable for regular languages.

Idea: restrict CFGs, such that:

Regular languages are contained (and then some)

Some questions become decidable

Let us fix a (finite) alphabet Σ .

 Σ^* denotes the set of words over Σ .

The *empty word* is denoted by ϵ .

 Σ^+ denotes the *non-empty words* over Σ .

For $w, x \in \Sigma^*$, wx denotes the *concatenation* of w and x.

A congruence on Σ^* is an equivalence \equiv on Σ^* such that

$$\frac{w \equiv w' \quad x \equiv x'}{wx \equiv w'x'}$$

 \equiv is *finitely generated* if it is the smallest congruence contained in a finite relation.

We write $[w]_{\pm}$ for the *congruence class* of $w \in \Sigma^*$ modulo \equiv , i.e.,

$$[w]_{\equiv} = \{x \in \Sigma^* : w \equiv x\}$$

Every language *L* induces a *syntactic congruence* \equiv_L :

$$\frac{\forall u, v \in \Sigma^*. \ uwv \in L \iff uxv \in L}{w \equiv_L x}$$

A reduction on Σ^* is a reflexive, transitive and Noetherian relation \rightsquigarrow on Σ^* such that

$$\frac{w \rightsquigarrow w' \qquad x \rightsquigarrow x'}{wx \rightsquigarrow w'x'}$$

◆□ > ◆□ > ◆目 > ◆目 > ●□ = ●○ <

A Context-Free Grammar (CFG) is a tuple $G = \langle V, \rightarrow, I \rangle$, s.t.

- ► V is a finite set of *non-terminals*
- $\blacktriangleright \rightarrow \subseteq V \times (V \cup \Sigma)^*$ is a finite *production relation*
- ▶ $I \subseteq V$ is a finite set of *initial non-terminals*

Elements of \rightarrow are known as *productions*. We write $\hat{\Sigma}$ for $V \cup \Sigma$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ヨ□ の00

We fix $G = \langle V, \rightarrow, I \rangle$ throughout this talk.

 $\Rightarrow_{{\sf G}}$ is the smallest relation on $\hat{\Sigma}^*$ such that

$$\frac{\alpha B\gamma \in \hat{\Sigma}^* \quad B \to \beta}{\alpha B\gamma \Rightarrow_{\mathcal{G}} \alpha \beta\gamma}$$

We write \Leftrightarrow_G for the symmetric closure of \Rightarrow_G .

For $A \in V$, we define:

$$\ell(G, A) = \{ \alpha \in \hat{\Sigma}^* : A \Rightarrow^*_G \alpha \} \qquad \qquad \ell(G) = \bigcup_{A \in I} \ell(G, A)$$
$$L(G, A) = \{ w \in \Sigma^* : A \Rightarrow^*_G w \} \qquad \qquad L(G) = \bigcup_{A \in I} L(G, A)$$

Convention

If $A \in V$, then $L(G, A) \neq \emptyset$.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

Congruence problem

Given a grammar G, and $w, x \in \Sigma^*$, does $w \equiv_{L(G)} x$ hold?

Equivalence problem

Given grammars G_1 and G_2 , does $L(G_1) = L(G_2)$ hold?

Equivalence¹ and congruence are undecidable for general CFGs.

Recognition problem

Given a class of grammars \mathcal{G} and a grammar G, does $G \in \mathcal{G}$ hold?

もうない 正則 スポットポット きょう

¹Bar-Hillel, Perles, and Shamir 1961.

G is NTS² when for
$$A \in V$$
 and $\alpha \in \hat{\Sigma}^*$, we have $A \Rightarrow^*_G \alpha$ iff $A \Leftrightarrow^*_G \alpha$

Example

Consider the grammars

$$G_1 = \langle \{S\}, \{S \rightarrow SS + a + b\}, \{S\} \rangle$$

$$G_2 = \langle \{S\}, \{S \rightarrow aS + bS + a + b\}, \{S\} \rangle$$

Here $\ell(G_1, S) = \{a, b, S\}^+ = \overline{\ell}(G_1, S)$, and thus G_1 is NTS. Contrarily, $S \Leftrightarrow_{G_2}^* SS$ while $S \neq_{G_2}^* SS$, and thus G_2 is not NTS.

²Boasson 1980.

G is pre-NTS³ when for $A \in V$ and $w \in \Sigma^*$, we have $A \Rightarrow^*_G w$ iff $A \Leftrightarrow^*_G w$.

Example

Consider the grammars

$$G_2 = \langle \{S\}, \{S \rightarrow aS + bS + a + b\}, \{S\} \rangle$$

$$G_3 = \langle \{S, T\}, \{S \rightarrow SS + a + b, T \rightarrow b\}, \{S, T\} \rangle$$

Here $L(G_2, S) = \{a, b\}^+ = \overline{L}(G_2, S)$, and thus G_2 is pre-NTS. Contrarily, $T \Leftrightarrow_{G_3}^* a$ while $T \not\Rightarrow_{G_3}^* a$, and thus G_3 is not pre-NTS.

³Autebert and Boasson 1992.

G is *Clark-congruential*⁴ when for $A \in V$ and $w, x \in L(G, A)$ it holds that $w \equiv_{L(G)} x$.

Example

Consider the grammars

$$G_3 = \langle \{S, T\}, \{S \rightarrow SS + a + b, T \rightarrow b\}, \{S, T\} \rangle$$

$$G_4 = \langle \{S, T\}, \{S \rightarrow SS + a + b + aT, T \rightarrow c + cc\}, \{S\} \rangle$$

Here $L(G_3, S), L(G_4, T) \subseteq [a]_{\equiv_{L(G_3)}}$, and thus G_3 is Clark-congruential. Contrarily, $a, \epsilon \in L(G_4, T)$ while $c \not\equiv_{L(G_4)} cc$, and thus G_4 is not Clark-congruential.

⁴Clark 2010.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

NTS-like • G4 Clark-congruential • G3 Pre-NTS • G₂ • G₁ NTS

	Congruence	Equivalence	Recognition
NTS	✓ ⁵	✓ ⁵	√ 5,6
Pre-NTS	✓7	✓7	<mark>×</mark> 8
Clark-congruential	 Image: A set of the set of the	 Image: A second s	†

◆□ > ◆□ > ◆ = > ◆ = > 三日 のへで

⁵Sénizergues 1985.
⁶Engelfriet 1994.
⁷Autebert and Boasson 1992.
⁸Zhang 1992.

We assume a total order \leq on Σ .

This order extends to a total order on Σ^* :

- lf w is shorter than x, then $w \leq x$.
- ▶ If w and x are of equal length, compare lexicographically.

For $\alpha \in \hat{\Sigma}^*$ with $L(G, \alpha) \neq \emptyset$, write $\vartheta_G(\alpha)$ for the \preceq -minimal element of $L(G, \alpha)$.

We mimic an earlier method to decide congruence.⁹

Let \rightsquigarrow_G be the smallest reduction such that

$$\frac{A \to \alpha \qquad \mathcal{L}(G, \alpha) \neq \emptyset}{\vartheta_G(\alpha) \rightsquigarrow_G \vartheta_G(A)}$$

Lemma

If $w \rightsquigarrow_G x$, then $w \equiv_{L(G)} x$.

⁹Autebert and Boasson 1992.

Lemma

$$w \in L(G)$$
 if and only if $w \rightsquigarrow_G \vartheta_G(A)$ for some $A \in I$.

Proof.

(⇒) If $w \in L(G)$, then $w \in L(G, A)$ for some $A \in I$. Work "backwards" through the derivation $A \Rightarrow^*_G w$ to go from w to $\vartheta_G(A)$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ヨ□ の00

 $(\Leftarrow) \text{ If } w \rightsquigarrow_G \vartheta_G(A) \text{, then } w \equiv_{L(G)} \vartheta_G(A) \text{, and thus } w \in L(G).$

Example

Let
$$G = \langle \{S\}, \{S \rightarrow SS + qSp + \epsilon\}, \{S\} \rangle$$
.

```
Then \rightsquigarrow_G is generated by qp \rightsquigarrow_G \epsilon, and thus
```

```
qqp \underline{qp} pqp \rightsquigarrow_{G} qqp pqp \rightsquigarrow_{G} qp \underline{qp} \rightsquigarrow_{G} qp \xrightarrow{} \sigma_{G} \epsilon = \vartheta_{G}(S)
```

```
and therefore qqpqppqp \in L(G).
```

From pqpq, we can only "reach" pq, which is irreducible; thus, $pqpq \notin L(G)$.

◆□▶ ◆□▶ ▲目▼ ▲目▼ ◆○◆

Given G, we write \mathcal{I}_G for the set of words *irreducible* by \rightsquigarrow_G . Let us fix $w, x \in \Sigma^*$.

Lemma

We can create a DPDA M_w such that $L(M_w) = \{u \sharp v : uwv \in L(G), u, v \in \mathcal{I}_G\}$.

"I have a truly marvelous proof which this margin is too narrow to contain..."

Recall:
$$L(M_w) = \{ u \sharp v : uwv \in L(G), u, v \in \mathcal{I}_G \}.$$

Lemma

$$L(M_w) = L(M_x)$$
 if and only if $w \equiv_L x$.

Proof.

(⇒) If
$$uwv \in L(G)$$
, let $u', v' \in \mathcal{I}_G$ be such that $u \rightsquigarrow_G u'$ and $v \rightsquigarrow_G v'$. Then $u' \ddagger v' \in L(M_w) = L(M_x)$. But then $u'xv' \in L(G)$; since $u'xv' \equiv_{L(G)} uxv$, also $uxv \in L(G)$. Analogously, $uxv \in L(G)$ implies $uwv \in L(G)$.

(\Leftarrow) If $y \in L(M_w)$, then $y = u \sharp v$ such that $uwv \in L(G)$ and $u, v \in \mathcal{I}_G$. But then $uxv \in L(G)$, and so $u \sharp v \in L(M_x)$. Analogously, $L(M_x) \subseteq L(M_w)$.

Since equivalence of DPDAs is decidable,¹⁰ we have

Theorem

Let $w, x \in \Sigma^*$. We can decide whether $w \equiv_{L(G)} x$.

Lemma

Let \approx_G be the smallest congruence containing \rightsquigarrow_G . Then

$$L(G) = \bigcup_{A \in I} \left[\vartheta_G(A) \right]_{\approx_G}$$

Proof.

(⊆) If
$$w \in L(G)$$
, then $w \rightsquigarrow_G \vartheta_G(A)$ for some $A \in I$, and so $w \approx_G \vartheta_G(A)$.
(⊇) If $w \approx_G \vartheta_G(A)$, then $w \equiv_{L(G)} \vartheta_G(A)$; but then $w \in L(G)$.

Note: \approx_{G} is finitely generated.

Analogous to a result about NTS grammars,¹¹ we find

Lemma

Let $G_1 = \langle V_1, \rightarrow_1, I_1 \rangle$ and $G_2 = \langle V_2, \rightarrow_2, I_2 \rangle$ be Clark-congruential. Then $L(G_1) = L(G_2)$ if and only if (i) for all $A \in I_1$, it holds that $\vartheta_{G_1}(A) \in L(G_2)$ (ii) for all $A \in I_2$, it holds that $\vartheta_{G_2}(A) \in L(G_1)$ (iii) for all pairs $u \approx_{G_1} v$ generating \approx_{G_1} , also $u \equiv_{L(G_2)} v$ (iv) for all pairs $u \approx_{G_2} v$ generating \approx_{G_2} , also $u \equiv_{L(G_1)} v$

¹¹Sénizergues 1985.

Theorem

Let G_1 and G_2 be Clark-congruential. We can decide whether $L(G_1) = L(G_2)$.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

Given a congruence \equiv , we can extend it a congruence \triangleq on $\hat{\Sigma}^*,$ by stipulating

$$\frac{\vartheta_{G}(\alpha) \equiv \vartheta_{G}(\beta)}{\alpha \triangleq \beta}$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

Lemma

Let \equiv be a congruence on Σ^* .

The following are equivalent:

- (i) For all productions $A \rightarrow \alpha$, it holds that $A \triangleq \alpha$
- (ii) For all $A \in V$ and $w, x \in L(G, A)$, it holds that $w \equiv x$.

Proof.

(i) \Rightarrow (ii): If $\beta \Rightarrow^*_G \gamma$, then $\beta \triangleq \gamma$. Thus, if $w, x \in L(G, A)$, then $A \Rightarrow^*_G w, x$, and so $w \triangleq A \triangleq x$. We conclude that $w = \vartheta_G(w) \equiv \vartheta_G(x) = x$.

(ii) \Rightarrow (i): If $A \rightarrow \alpha$, then $\vartheta_G(A), \vartheta_G(\alpha) \in L(G, A)$, and so $\vartheta_G(A) \equiv \vartheta_G(\alpha)$. From this, we conclude that $A \triangleq \alpha$.

Theorem

If $\equiv_{L(G)}$ is decidable, then we can decide whether G is Clark-congruential. Proof.

For
$$A \to \alpha$$
, check whether $A \triangleq_{L(G)} \alpha$, i.e., whether $\vartheta_G(A) \equiv_{L(G)} \vartheta_G(\alpha)$.

Corollary

If L(G) is a deterministic CFL, then it is decidable whether G is Clark-congruential.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ヨ□ の00

Many open questions:

- Are pre-NTS grammars more expressive than NTS grammars?
- Are Clark-congruential grammars more expressive than pre-NTS grammars?
- Is the language of every pre-NTS grammar a DCFL?
- Is the language of every Clark-congruential grammar a DCFL?
- Is it decidable in general whether a given grammar is Clark-congruential?
- Is it decidable whether the grammar of a DCFL is pre-NTS?

G is *NTS-like* when $L(G, A) \cap L(G, B) \neq \emptyset$ implies that adding $A \to B$ and $B \to A$ does not change L(G).

Example

Consider the grammars

$$G_{5} = \langle \{S, T\}, \{S \to aS + bT + \epsilon, T \to bS + aT + \epsilon\}, \{S\} \rangle$$

$$G_{6} = \langle \{S, T\}, \{S \to aS + bT + \epsilon, T \to aS + a\}, \{S\} \rangle$$

Here $L(G_5) = L(G_5, A) = L(G_5, T) = \{a, b\}^*$; thus, G_5 is NTS-like. Contrarily, $a \in L(G_6, S) \cap L(G_6, T)$, but adding $T \to S$ changes $L(G_6)$.

Lemma

Let G be Clark-congruential, and let R be regular.

We can create a Clark-congruential grammar G_R such that $L(G_R) = L(G) \cap R$.

Lemma

Let $h: \Sigma^* \to \Sigma^*$ be a strictly alphabetic morphism, that is, $h(a) \in \Sigma$ for all $a \in \Sigma$. We can create a Clark-congruential grammar G^h such that $L(G^h) = h^{-1}(L(G))$.

For $a \in \Sigma$, add \bar{a} to Σ . Let $h : \Sigma \to \Sigma$ be such that $h(a) = h(\bar{a}) = a$. Create G' such that $L(G') = h^{-1}(L(G))$.

Intuition

G' is the same as G, but positions in every word can be "marked" by $\bar{}$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ヨ□ の00

Note that \mathcal{I}_G is a regular language. Create G'_w such that $L(G'_w) = L(G') \cap \mathcal{I}_G \bar{w} \mathcal{I}_G$. Now $G'_w = \{u \bar{w} v : u w v \in L(G), u, v \in \mathcal{I}_G\}.$

Intuition

 $L(G'_w)$ has words in L(G) with w as a marked substring, with context reduced by \rightsquigarrow_G .

◆□▶ ◆□▶ ◆目▼ ◆目▼ ◆○◆

Lemma

If G is Clark-congruential, we can create a grammar G_{ω} such that:

- (i) G_{ω} is Clark-congruential.
- (ii) G_{ω} is equivalent to G, i.e., $L(G) = L(G_{\omega})$.
- (iii) If $A \in V$, then $A \in I$ or L(G, A) is infinite.

(iv) If $A \to \alpha$ and L(G, A) is finite, then $\alpha \in \Sigma^*$.

Let $G_w = \langle V_w, \rightarrow_w, I_w \rangle$ be such a grammar obtained from G'_w .

▲□▶ ▲□▶ ▲□▶ ▲□▶ ヨ□ の00

Lemma

If $A
ightarrow \alpha$ exists in G_w , then one of the following holds:

(i) ϑ_{G_w}(A) = x_Aw̄_ℓ and ϑ_{G_w}(α) = x_αw̄_ℓ, for x_A, x_α ∈ Σ₀^{*} and w̄_ℓ a prefix of w̄.
(ii) ϑ_{G_w}(A) = w̄_ry_A and ϑ_{G_w}(α) = w̄_ry_α, for y_A, y_α ∈ Σ₀^{*} and w̄_r a suffix of w̄.
(iii) ϑ_{G_w}(A) = x_Aw̄y_A and ϑ_{G_w}(α) = x_αw̄y_α, for x_A, y_A, x_α, y_α ∈ Σ₀^{*}.

Intuition

Every rule generating \rightsquigarrow_{G_w} overlaps and preserves \bar{w} .

We can now create a reduction $\rightsquigarrow_{G[w]}$ and a finite set S_w such that

- Every rule generating $\rightsquigarrow_{G[w]}$ contains and preserves \sharp .
- $\blacktriangleright \{x \in \Sigma^* : x \rightsquigarrow_{G[w]} y \in S_w\} = \{u \sharp v : uwv \in L(G), u, v \in \mathcal{I}_G\}$

The DPDA M_w acts by reading $u \sharp v$ up to \sharp , putting the input on the stack. Then:

- Pop from the stack or read from input into two buffers (encoded in state).
- Whenever possible, reduce according to the rules from $\rightsquigarrow_{G[w]}$.
- When the buffer resembles S_w and the input and stack are empty, accept.

With some analysis, we find that $L(M_w) = \{u \not\mid v : uwv \in L(G), u, v \in \mathcal{I}_G\}.$