
Decidability for Clark-congruential CFGs

Tobias Kappé Makoto Kanazawa

NII Logic Seminar, January 10, 2018

Introduction

Context Free Grammars are surrounded by undecidable questions:

I Universality

I Equivalence

I Congruence

These are all decidable for regular languages.

Introduction

Idea: restrict CFGs, such that:

I Regular languages are contained (and then some)

I Some questions become decidable

Preliminaries

Let us fix a (finite) alphabet Σ.

Σ∗ denotes the set of words over Σ.

The empty word is denoted by ε.

Σ+ denotes the non-empty words over Σ.

For w , x ∈ Σ∗, wx denotes the concatenation of w and x .

Preliminaries

A congruence on Σ∗ is an equivalence ≡ on Σ∗ such that

w ≡ w ′ x ≡ x ′

wx ≡ w ′x ′

≡ is finitely generated if it is the smallest congruence contained in a finite relation.

We write [w]≡ for the congruence class of w ∈ Σ∗ modulo ≡, i.e.,

[w]≡ = {x ∈ Σ∗ : w ≡ x}

Preliminaries

Every language L induces a syntactic congruence ≡L:

∀u, v ∈ Σ∗. uwv ∈ L ⇐⇒ uxv ∈ L

w ≡L x

Preliminaries

A reduction on Σ∗ is a reflexive, transitive and Noetherian relation on Σ∗ such that

w w ′ x x ′

wx w ′x ′

Preliminaries

A Context-Free Grammar (CFG) is a tuple G = 〈V ,→, I 〉, s.t.

I V is a finite set of non-terminals

I → ⊆ V × (V ∪ Σ)∗ is a finite production relation

I I ⊆ V is a finite set of initial non-terminals

Elements of → are known as productions. We write Σ̂ for V ∪ Σ.

We fix G = 〈V ,→, I 〉 throughout this talk.

Preliminaries

⇒G is the smallest relation on Σ̂∗ such that

αBγ ∈ Σ̂∗ B → β

αBγ ⇒G αβγ

We write ⇔G for the symmetric closure of ⇒G .

Preliminaries

For A ∈ V , we define:

`(G ,A) = {α ∈ Σ̂∗ : A⇒∗G α} `(G) =
⋃
A∈I

`(G ,A)

L(G ,A) = {w ∈ Σ∗ : A⇒∗G w} L(G) =
⋃
A∈I

L(G ,A)

Convention

If A ∈ V , then L(G ,A) 6= ∅.

Preliminaries

Congruence problem

Given a grammar G , and w , x ∈ Σ∗, does w ≡L(G) x hold?

Equivalence problem

Given grammars G1 and G2, does L(G1) = L(G2) hold?

Equivalence1 and congruence are undecidable for general CFGs.

Recognition problem

Given a class of grammars G and a grammar G , does G ∈ G hold?

1Bar-Hillel, Perles, and Shamir 1961.

Classes of grammars

G is NTS2 when for A ∈ V and α ∈ Σ̂∗, we have A⇒∗G α iff A⇔∗G α.

Example

Consider the grammars

G1 = 〈{S}, {S → SS + a + b}, {S}〉
G2 = 〈{S}, {S → aS + bS + a + b}, {S}〉

Here `(G1, S) = {a, b,S}+ = ¯̀(G1, S), and thus G1 is NTS.

Contrarily, S ⇔∗G2
SS while S 6⇒∗G2

SS , and thus G2 is not NTS.

2Boasson 1980.

Classes of grammars

G is pre-NTS3 when for A ∈ V and w ∈ Σ∗, we have A⇒∗G w iff A⇔∗G w .

Example

Consider the grammars

G2 = 〈{S}, {S → aS + bS + a + b}, {S}〉
G3 = 〈{S ,T}, {S → SS + a + b, T → b}, {S ,T}〉

Here L(G2,S) = {a, b}+ = L̄(G2, S), and thus G2 is pre-NTS.

Contrarily, T ⇔∗G3
a while T 6⇒∗G3

a, and thus G3 is not pre-NTS.

3Autebert and Boasson 1992.

Classes of grammars

G is Clark-congruential4 when for A ∈ V and w , x ∈ L(G ,A) it holds that w ≡L(G) x .

Example

Consider the grammars

G3 = 〈{S ,T}, {S → SS + a + b, T → b}, {S ,T}〉
G4 = 〈{S ,T}, {S → SS + a + b + aT , T → c + cc}, {S}〉

Here L(G3,S), L(G4,T) ⊆ [a]≡L(G3)
, and thus G3 is Clark-congruential.

Contrarily, a, ε ∈ L(G4,T) while c 6≡L(G4) cc , and thus G4 is not Clark-congruential.

4Clark 2010.

Classes of grammars

NTS

Pre-NTS

Clark-congruential

NTS-like

G1

G2

G3

G4

Classes of grammars

Congruence Equivalence Recognition

Clark-congruential

Pre-NTS

NTS 35 35 35,6

37 37 78

3 3 †

5Sénizergues 1985.
6Engelfriet 1994.
7Autebert and Boasson 1992.
8Zhang 1992.

Deciding congruence

We assume a total order � on Σ.

This order extends to a total order on Σ∗:

I If w is shorter than x , then w � x .

I If w and x are of equal length, compare lexicographically.

For α ∈ Σ̂∗ with L(G , α) 6= ∅, write ϑG (α) for the �-minimal element of L(G , α).

Deciding congruence

We mimic an earlier method to decide congruence.9

Let G be the smallest reduction such that

A→ α L(G , α) 6= ∅
ϑG (α) G ϑG (A)

Lemma

If w G x , then w ≡L(G) x .

9Autebert and Boasson 1992.

Deciding congruence

Lemma

w ∈ L(G) if and only if w G ϑG (A) for some A ∈ I .

Proof.

(⇒) If w ∈ L(G), then w ∈ L(G ,A) for some A ∈ I . Work “backwards” through the
derivation A⇒∗G w to go from w to ϑG (A).

(⇐) If w G ϑG (A), then w ≡L(G) ϑG (A), and thus w ∈ L(G).

Deciding congruence

Example

Let G = 〈{S}, {S → SS + qSp + ε}, {S}〉.

Then G is generated by qp G ε, and thus

qqpqppqp G qqppqp G qpqp G qp G ε = ϑG (S)

and therefore qqpqppqp ∈ L(G).

From pqpq, we can only “reach” pq, which is irreducible; thus, pqpq 6∈ L(G).

Deciding congruence

Given G , we write IG for the set of words irreducible by G .

Let us fix w , x ∈ Σ∗.

Lemma

We can create a DPDA Mw such that L(Mw) = {u]v : uwv ∈ L(G), u, v ∈ IG}.

“I have a truly marvelous proof which this margin is too narrow to contain. . . ”

Deciding congruence

Recall: L(Mw) = {u]v : uwv ∈ L(G), u, v ∈ IG}.

Lemma

L(Mw) = L(Mx) if and only if w ≡L x .

Proof.

(⇒) If uwv ∈ L(G), let u′, v ′ ∈ IG be such that u G u′ and v G v ′. Then
u′]v ′ ∈ L(Mw) = L(Mx). But then u′xv ′ ∈ L(G); since u′xv ′ ≡L(G) uxv , also
uxv ∈ L(G). Analogously, uxv ∈ L(G) implies uwv ∈ L(G).

(⇐) If y ∈ L(Mw), then y = u]v such that uwv ∈ L(G) and u, v ∈ IG . But then
uxv ∈ L(G), and so u]v ∈ L(Mx). Analogously, L(Mx) ⊆ L(Mw).

Deciding congruence

Since equivalence of DPDAs is decidable,10 we have

Theorem

Let w , x ∈ Σ∗. We can decide whether w ≡L(G) x .

10Sénizergues 1997.

Deciding equivalence

Lemma

Let ≈G be the smallest congruence containing G . Then

L(G) =
⋃
A∈I

[ϑG (A)]≈G

Proof.

(⊆) If w ∈ L(G), then w G ϑG (A) for some A ∈ I , and so w ≈G ϑG (A).

(⊇) If w ≈G ϑG (A), then w ≡L(G) ϑG (A); but then w ∈ L(G).

Note: ≈G is finitely generated.

Deciding equivalence

Analogous to a result about NTS grammars,11 we find

Lemma

Let G1 = 〈V1,→1, I1〉 and G2 = 〈V2,→2, I2〉 be Clark-congruential.

Then L(G1) = L(G2) if and only if

(i) for all A ∈ I1, it holds that ϑG1(A) ∈ L(G2)

(ii) for all A ∈ I2, it holds that ϑG2(A) ∈ L(G1)

(iii) for all pairs u ≈G1 v generating ≈G1 , also u ≡L(G2) v

(iv) for all pairs u ≈G2 v generating ≈G2 , also u ≡L(G1) v

11Sénizergues 1985.

Deciding equivalence

Theorem

Let G1 and G2 be Clark-congruential. We can decide whether L(G1) = L(G2).

Deciding Clark-congruentiality

Given a congruence ≡, we can extend it a congruence ≡̂ on Σ̂∗, by stipulating

ϑG (α) ≡ ϑG (β)

α ≡̂ β

Deciding Clark-congruentiality

Lemma

Let ≡ be a congruence on Σ∗.

The following are equivalent:

(i) For all productions A→ α, it holds that A ≡̂ α

(ii) For all A ∈ V and w , x ∈ L(G ,A), it holds that w ≡ x .

Proof.

(i) ⇒ (ii): If β ⇒∗G γ, then β ≡̂ γ. Thus, if w , x ∈ L(G ,A), then A⇒∗G w , x , and so
w ≡̂ A ≡̂ x . We conclude that w = ϑG (w) ≡ ϑG (x) = x .

(ii) ⇒ (i): If A→ α, then ϑG (A), ϑG (α) ∈ L(G ,A), and so ϑG (A) ≡ ϑG (α). From
this, we conclude that A ≡̂ α.

Deciding Clark-congruentiality

Theorem

If ≡L(G) is decidable, then we can decide whether G is Clark-congruential.

Proof.

For A→ α, check whether A ≡̂L(G) α, i.e., whether ϑG (A) ≡L(G) ϑG (α).

Corollary

If L(G) is a deterministic CFL, then it is decidable whether G is Clark-congruential.

Further work

Many open questions:

I Are pre-NTS grammars more expressive than NTS grammars?

I Are Clark-congruential grammars more expressive than pre-NTS grammars?

I Is the language of every pre-NTS grammar a DCFL?

I Is the language of every Clark-congruential grammar a DCFL?

I Is it decidable in general whether a given grammar is Clark-congruential?

I Is it decidable whether the grammar of a DCFL is pre-NTS?

Bonus: NTS-like grammars

G is NTS-like when L(G ,A) ∩ L(G ,B) 6= ∅ implies that adding A→ B and B → A
does not change L(G).

Example

Consider the grammars

G5 = 〈{S ,T}, {S → aS + bT + ε, T → bS + aT + ε}, {S}〉
G6 = 〈{S ,T}, {S → aS + bT + ε, T → aS + a}, {S}〉

Here L(G5) = L(G5,A) = L(G5,T) = {a, b}∗; thus, G5 is NTS-like.

Contrarily, a ∈ L(G6,S) ∩ L(G6,T), but adding T → S changes L(G6).

Bonus: grammar to DPDA

Lemma

Let G be Clark-congruential, and let R be regular.

We can create a Clark-congruential grammar GR such that L(GR) = L(G) ∩ R.

Lemma

Let h : Σ∗ → Σ∗ be a strictly alphabetic morphism, that is, h(a) ∈ Σ for all a ∈ Σ.

We can create a Clark-congruential grammar Gh such that L(Gh) = h−1(L(G)).

Bonus: grammar to DPDA

For a ∈ Σ, add ā to Σ.

Let h : Σ→ Σ be such that h(a) = h(ā) = a.

Create G ′ such that L(G ′) = h−1(L(G)).

Intuition

G ′ is the same as G , but positions in every word can be “marked” by ¯.

Bonus: grammar to DPDA

Note that IG is a regular language.

Create G ′w such that L(G ′w) = L(G ′) ∩ IG w̄IG .

Now G ′w = {uw̄v : uwv ∈ L(G), u, v ∈ IG}.

Intuition

L(G ′w) has words in L(G) with w as a marked substring, with context reduced by G .

Bonus: grammar to DPDA

Lemma

If G is Clark-congruential, we can create a grammar Gω such that:

(i) Gω is Clark-congruential.

(ii) Gω is equivalent to G , i.e., L(G) = L(Gω).

(iii) If A ∈ V , then A ∈ I or L(G ,A) is infinite.

(iv) If A→ α and L(G ,A) is finite, then α ∈ Σ∗.

Let Gw = 〈Vw ,→w , Iw 〉 be such a grammar obtained from G ′w .

Bonus: grammar to DPDA

Lemma

If A→ α exists in Gw , then one of the following holds:

(i) ϑGw (A) = xAw̄` and ϑGw (α) = xαw̄`, for xA, xα ∈ Σ∗0 and w̄` a prefix of w̄ .

(ii) ϑGw (A) = w̄ryA and ϑGw (α) = w̄ryα, for yA, yα ∈ Σ∗0 and w̄r a suffix of w̄ .

(iii) ϑGw (A) = xAw̄yA and ϑGw (α) = xαw̄yα, for xA, yA, xα, yα ∈ Σ∗0.

Intuition

Every rule generating Gw overlaps and preserves w̄ .

Bonus: grammar to DPDA

We can now create a reduction G [w] and a finite set Sw such that

I Every rule generating G [w] contains and preserves].

I {x ∈ Σ∗ : x G [w] y ∈ Sw} = {u]v : uwv ∈ L(G), u, v ∈ IG}

The DPDA Mw acts by reading u]v up to], putting the input on the stack. Then:

I Pop from the stack or read from input into two buffers (encoded in state).

I Whenever possible, reduce according to the rules from G [w].

I When the buffer resembles Sw and the input and stack are empty, accept.

With some analysis, we find that L(Mw) = {u]v : uwv ∈ L(G), u, v ∈ IG}.

	Introduction
	Preliminaries
	Classes of grammars
	Deciding congruence
	Deciding equivalence
	Deciding Clark-congruentiality
	Further work
	Appendix
	Bonus: NTS-like grammars
	Bonus: grammar to DPDA

