
Decision problems for Clark-congruential languages

Makoto Kanazawa1 Tobias Kappé2

1Hosei University, Tokyo

2University College London

Work performed at the National Institute of Informatics, Tokyo.

ICGI, September 5, 2018

1

Introduction

Suppose you know the following Japanese phrase:

猫は椅子で眠る The cat sleeps in the chair.

You also know that dog is 犬. Now, you can form:

犬は椅子で眠る The dog sleeps in the chair.

2

Introduction

Suppose you know the following Japanese phrase:

猫は椅子で眠る The cat sleeps in the chair.

You also know that dog is 犬. Now, you can form:

犬は椅子で眠る The dog sleeps in the chair.

2

Introduction

This works because 猫 and 犬 are nouns.

Replacing nouns (probably) preserves grammatical correctness.

猫 and 犬 are (almost) syntactically congruent:

u猫v ∈ Japanese “⇐⇒ ” u犬v ∈ Japanese

3

Introduction

This works because 猫 and 犬 are nouns.

Replacing nouns (probably) preserves grammatical correctness.

猫 and 犬 are (almost) syntactically congruent:

u猫v ∈ Japanese “⇐⇒ ” u犬v ∈ Japanese

3

Introduction

This works because 猫 and 犬 are nouns.

Replacing nouns (probably) preserves grammatical correctness.

猫 and 犬 are (almost) syntactically congruent:

u猫v ∈ Japanese “⇐⇒ ” u犬v ∈ Japanese

3

Introduction

Idea: use syntactic congruence to drive learning.1

When (for all we know) uwv ∈ L ⇐⇒ uxv ∈ L, presume w ≡L x .

. . . but how to represent the language?

1Clark 2010.
4

Introduction

Idea: use syntactic congruence to drive learning.1

When (for all we know) uwv ∈ L ⇐⇒ uxv ∈ L, presume w ≡L x .

. . . but how to represent the language?

1Clark 2010.
4

Introduction

Idea: use syntactic congruence to drive learning.1

When (for all we know) uwv ∈ L ⇐⇒ uxv ∈ L, presume w ≡L x .

. . . but how to represent the language?

1Clark 2010.
4

Introduction

Definition (Informal)

A grammar is Clark-congruential (CC) if words derived from the same symbol are
syntactically congruent for its language.

A language is CC when there exists a CC grammar that describes it.

Example

Consider these grammars for L = {a, b}+:

G1 : S → SS + a + b
G2 : S → TS + a + b, T → a + b + ε

If S derives w and x in G1, then uwv ∈ L implies uxv ∈ L — G1 is CC.

However: T derives a and ε in G2. Now, a ∈ L but ε 6∈ L — G2 is not CC.

5

Introduction

Definition (Informal)

A grammar is Clark-congruential (CC) if words derived from the same symbol are
syntactically congruent for its language.

A language is CC when there exists a CC grammar that describes it.

Example

Consider these grammars for L = {a, b}+:

G1 : S → SS + a + b
G2 : S → TS + a + b, T → a + b + ε

If S derives w and x in G1, then uwv ∈ L implies uxv ∈ L — G1 is CC.

However: T derives a and ε in G2. Now, a ∈ L but ε 6∈ L — G2 is not CC.

5

Introduction

Definition (Informal)

A grammar is Clark-congruential (CC) if words derived from the same symbol are
syntactically congruent for its language.

A language is CC when there exists a CC grammar that describes it.

Example

Consider these grammars for L = {a, b}+:

G1 : S → SS + a + b
G2 : S → TS + a + b, T → a + b + ε

If S derives w and x in G1, then uwv ∈ L implies uxv ∈ L — G1 is CC.

However: T derives a and ε in G2. Now, a ∈ L but ε 6∈ L — G2 is not CC.

5

Introduction

Definition (Informal)

A grammar is Clark-congruential (CC) if words derived from the same symbol are
syntactically congruent for its language.

A language is CC when there exists a CC grammar that describes it.

Example

Consider these grammars for L = {a, b}+:

G1 : S → SS + a + b
G2 : S → TS + a + b, T → a + b + ε

If S derives w and x in G1, then uwv ∈ L implies uxv ∈ L — G1 is CC.

However: T derives a and ε in G2. Now, a ∈ L but ε 6∈ L — G2 is not CC.

5

Introduction

Let G be a CC grammar describing L.

In the minimally adequate teacher (MAT) model, the learner can query:

I Given w ∈ Σ∗, does w ∈ L(G) hold?

I Given a grammar H, does L(G) = L(H) hold? If not, give a counterexample.

Theorem (Clark 2010)

Let L be a CC language; L is “MAT-learnable”.
That is, given a MAT for L, we can construct a CC grammar for L.

Is this decidable?

Question

Let L be a CC language; is L “MAT-teachable”?
That is, given a CC grammar for L, can we construct a MAT for L?

6

Introduction

Let G be a CC grammar describing L.

In the minimally adequate teacher (MAT) model, the learner can query:

I Given w ∈ Σ∗, does w ∈ L(G) hold?

I Given a grammar H, does L(G) = L(H) hold? If not, give a counterexample.

Theorem (Clark 2010)

Let L be a CC language; L is “MAT-learnable”.
That is, given a MAT for L, we can construct a CC grammar for L.

Is this decidable?

Question

Let L be a CC language; is L “MAT-teachable”?
That is, given a CC grammar for L, can we construct a MAT for L?

6

Introduction

Let G be a CC grammar describing L.

In the minimally adequate teacher (MAT) model, the learner can query:

I Given w ∈ Σ∗, does w ∈ L(G) hold?

I Given a grammar H, does L(G) = L(H) hold? If not, give a counterexample.

Theorem (Clark 2010)

Let L be a CC language; L is “MAT-learnable”.
That is, given a MAT for L, we can construct a CC grammar for L.

Is this decidable?

Question

Let L be a CC language; is L “MAT-teachable”?
That is, given a CC grammar for L, can we construct a MAT for L?

6

Introduction

Let G be a CC grammar describing L.

In the minimally adequate teacher (MAT) model, the learner can query:

I Given w ∈ Σ∗, does w ∈ L(G) hold?

I Given a grammar H, does L(G) = L(H) hold? If not, give a counterexample.

Theorem (Clark 2010)

Let L be a CC language; L is “MAT-learnable”.
That is, given a MAT for L, we can construct a CC grammar for L.

Is this decidable?

Question

Let L be a CC language; is L “MAT-teachable”?
That is, given a CC grammar for L, can we construct a MAT for L?

6

Introduction

Let G be a CC grammar describing L.

In the minimally adequate teacher (MAT) model, the learner can query:

I Given w ∈ Σ∗, does w ∈ L(G) hold?

I Given a grammar H, does L(G) = L(H) hold? If not, give a counterexample.

Theorem (Clark 2010)

Let L be a CC language; L is “MAT-learnable”.
That is, given a MAT for L, we can construct a CC grammar for L.

Is this decidable?

Question

Let L be a CC language; is L “MAT-teachable”?
That is, given a CC grammar for L, can we construct a MAT for L?

6

Context

Equivalence problem

Given grammars G1 and G2, does L(G1) = L(G2) hold?

Congruence problem

Given a grammar G , and w , x ∈ Σ∗, are w and x syntactically congruent for L(G)?

Equivalence and congruence are undecidable for grammars in general.2

Recognition problem

Given a class of grammars C and a grammar G , does G belong to C?

2Bar-Hillel, Perles, and Shamir 1961.
7

Context

Equivalence problem

Given grammars G1 and G2, does L(G1) = L(G2) hold?

Congruence problem

Given a grammar G , and w , x ∈ Σ∗, are w and x syntactically congruent for L(G)?

Equivalence and congruence are undecidable for grammars in general.2

Recognition problem

Given a class of grammars C and a grammar G , does G belong to C?

2Bar-Hillel, Perles, and Shamir 1961.
7

Context

Equivalence problem

Given grammars G1 and G2, does L(G1) = L(G2) hold?

Congruence problem

Given a grammar G , and w , x ∈ Σ∗, are w and x syntactically congruent for L(G)?

Equivalence and congruence are undecidable for grammars in general.2

Recognition problem

Given a class of grammars C and a grammar G , does G belong to C?

2Bar-Hillel, Perles, and Shamir 1961.
7

Context

Equivalence problem

Given grammars G1 and G2, does L(G1) = L(G2) hold?

Congruence problem

Given a grammar G , and w , x ∈ Σ∗, are w and x syntactically congruent for L(G)?

Equivalence and congruence are undecidable for grammars in general.2

Recognition problem

Given a class of grammars C and a grammar G , does G belong to C?

2Bar-Hillel, Perles, and Shamir 1961.
7

Context

CC languages

Context-free languages

Pre-NTS languages

NTS languages

8

Context

CC languages

Context-free languages

Pre-NTS languages

NTS languages

8

Context

CC languages

Context-free languages

Pre-NTS languages

NTS languages

8

Context

CC languages

Context-free languages

Pre-NTS languages

NTS languages

8

Context

Congruence Equivalence Recognition

NTS

Pre-NTS

Clark-congruential

33 33 33,4

35 35 76

3 3 †

3Sénizergues 1985.
4Engelfriet 1994.
5Autebert and Boasson 1992.
6Zhang 1992.

9

Context

Congruence Equivalence Recognition

NTS

Pre-NTS

Clark-congruential

33 33 33,4

35 35 76

3 3 †

3Sénizergues 1985.
4Engelfriet 1994.
5Autebert and Boasson 1992.
6Zhang 1992.

9

Preliminaries

A congruence on Σ∗ is an equivalence ≡ on Σ∗ such that

w ≡ w ′ x ≡ x ′

wx ≡ w ′x ′

Every language L induces a syntactic congruence ≡L:

∀u, v ∈ Σ∗. uwv ∈ L ⇐⇒ uxv ∈ L

w ≡L x

10

Preliminaries

A congruence on Σ∗ is an equivalence ≡ on Σ∗ such that

w ≡ w ′ x ≡ x ′

wx ≡ w ′x ′

Every language L induces a syntactic congruence ≡L:

∀u, v ∈ Σ∗. uwv ∈ L ⇐⇒ uxv ∈ L

w ≡L x

10

Preliminaries

A Context-Free Grammar (CFG) is a tuple G = 〈V ,→, I 〉.

αBγ ∈ (Σ ∪ V)∗ B → β

αBγ ⇒G αβγ

L(G , α) = {w ∈ Σ∗ : α⇒∗G w} L(G) =
⋃
A∈I

L(G ,A)

Definition (More formal)

We say G is CC when for A ∈ V and w , x ∈ L(G ,A), we have w ≡L(G) x .

11

Preliminaries

A Context-Free Grammar (CFG) is a tuple G = 〈V ,→, I 〉.

αBγ ∈ (Σ ∪ V)∗ B → β

αBγ ⇒G αβγ

L(G , α) = {w ∈ Σ∗ : α⇒∗G w}

L(G) =
⋃
A∈I

L(G ,A)

Definition (More formal)

We say G is CC when for A ∈ V and w , x ∈ L(G ,A), we have w ≡L(G) x .

11

Preliminaries

A Context-Free Grammar (CFG) is a tuple G = 〈V ,→, I 〉.

αBγ ∈ (Σ ∪ V)∗ B → β

αBγ ⇒G αβγ

L(G , α) = {w ∈ Σ∗ : α⇒∗G w} L(G) =
⋃
A∈I

L(G ,A)

Definition (More formal)

We say G is CC when for A ∈ V and w , x ∈ L(G ,A), we have w ≡L(G) x .

11

Preliminaries

A Context-Free Grammar (CFG) is a tuple G = 〈V ,→, I 〉.

αBγ ∈ (Σ ∪ V)∗ B → β

αBγ ⇒G αβγ

L(G , α) = {w ∈ Σ∗ : α⇒∗G w} L(G) =
⋃
A∈I

L(G ,A)

Definition (More formal)

We say G is CC when for A ∈ V and w , x ∈ L(G ,A), we have w ≡L(G) x .

11

Preliminaries

We assume a total order � on Σ.

This order extends to a total order on Σ∗:

I If w is shorter than x , then w � x .

I If w and x are of equal length, compare lexicographically.

For α ∈ (Σ ∪ V)∗ with L(G , α) 6= ∅, write ϑG (α) for the �-minimum of L(G , α).

12

Preliminaries

We assume a total order � on Σ.

This order extends to a total order on Σ∗:

I If w is shorter than x , then w � x .

I If w and x are of equal length, compare lexicographically.

For α ∈ (Σ ∪ V)∗ with L(G , α) 6= ∅, write ϑG (α) for the �-minimum of L(G , α).

12

Preliminaries

We assume a total order � on Σ.

This order extends to a total order on Σ∗:

I If w is shorter than x , then w � x .

I If w and x are of equal length, compare lexicographically.

For α ∈ (Σ ∪ V)∗ with L(G , α) 6= ∅, write ϑG (α) for the �-minimum of L(G , α).

12

Deciding congruence

Let G be CC.

We mimic an earlier method to decide congruence.7

Let G be the smallest rewriting relation such that

A→ α L(G , α) 6= ∅
ϑG (α) G ϑG (A)

Lemma

If w G x, then w ≡L(G) x.

7Autebert and Boasson 1992.
13

Deciding congruence

Let G be CC.

We mimic an earlier method to decide congruence.7

Let G be the smallest rewriting relation such that

A→ α L(G , α) 6= ∅
ϑG (α) G ϑG (A)

Lemma

If w G x, then w ≡L(G) x.

7Autebert and Boasson 1992.
13

Deciding congruence

Let G be CC.

We mimic an earlier method to decide congruence.7

Let G be the smallest rewriting relation such that

A→ α L(G , α) 6= ∅
ϑG (α) G ϑG (A)

Lemma

If w G x, then w ≡L(G) x.

7Autebert and Boasson 1992.
13

Deciding congruence

Lemma

w ∈ L(G) if and only if w G ϑG (A) for some A ∈ I .

Example

Let G = 〈{S}, {S → SS + (S) + ε}, {S}〉; this grammar is CC.

 G is generated by () G ε

(()())()

 G (())() G ()() G () G ε = ϑG (S)

therefore: (()())() ∈ L(G).

From)()(, we cannot reach ε; thus,)()(6∈ L(G).

14

Deciding congruence

Lemma

w ∈ L(G) if and only if w G ϑG (A) for some A ∈ I .

Example

Let G = 〈{S}, {S → SS + (S) + ε}, {S}〉; this grammar is CC.

 G is generated by () G ε

(()())()

 G (())() G ()() G () G ε = ϑG (S)

therefore: (()())() ∈ L(G).

From)()(, we cannot reach ε; thus,)()(6∈ L(G).

14

Deciding congruence

Lemma

w ∈ L(G) if and only if w G ϑG (A) for some A ∈ I .

Example

Let G = 〈{S}, {S → SS + (S) + ε}, {S}〉; this grammar is CC.

 G is generated by () G ε

(()())()

 G (())() G ()() G () G ε = ϑG (S)

therefore: (()())() ∈ L(G).

From)()(, we cannot reach ε; thus,)()(6∈ L(G).

14

Deciding congruence

Lemma

w ∈ L(G) if and only if w G ϑG (A) for some A ∈ I .

Example

Let G = 〈{S}, {S → SS + (S) + ε}, {S}〉; this grammar is CC.

 G is generated by () G ε

(()())() G (())()

 G ()() G () G ε = ϑG (S)

therefore: (()())() ∈ L(G).

From)()(, we cannot reach ε; thus,)()(6∈ L(G).

14

Deciding congruence

Lemma

w ∈ L(G) if and only if w G ϑG (A) for some A ∈ I .

Example

Let G = 〈{S}, {S → SS + (S) + ε}, {S}〉; this grammar is CC.

 G is generated by () G ε

(()())() G (())() G ()()

 G () G ε = ϑG (S)

therefore: (()())() ∈ L(G).

From)()(, we cannot reach ε; thus,)()(6∈ L(G).

14

Deciding congruence

Lemma

w ∈ L(G) if and only if w G ϑG (A) for some A ∈ I .

Example

Let G = 〈{S}, {S → SS + (S) + ε}, {S}〉; this grammar is CC.

 G is generated by () G ε

(()())() G (())() G ()() G ()

 G ε = ϑG (S)

therefore: (()())() ∈ L(G).

From)()(, we cannot reach ε; thus,)()(6∈ L(G).

14

Deciding congruence

Lemma

w ∈ L(G) if and only if w G ϑG (A) for some A ∈ I .

Example

Let G = 〈{S}, {S → SS + (S) + ε}, {S}〉; this grammar is CC.

 G is generated by () G ε

(()())() G (())() G ()() G () G ε = ϑG (S)

therefore: (()())() ∈ L(G).

From)()(, we cannot reach ε; thus,)()(6∈ L(G).

14

Deciding congruence

Lemma

w ∈ L(G) if and only if w G ϑG (A) for some A ∈ I .

Example

Let G = 〈{S}, {S → SS + (S) + ε}, {S}〉; this grammar is CC.

 G is generated by () G ε

(()())() G (())() G ()() G () G ε = ϑG (S)

therefore: (()())() ∈ L(G).

From)()(, we cannot reach ε; thus,)()(6∈ L(G).

14

Deciding congruence

Lemma

w ∈ L(G) if and only if w G ϑG (A) for some A ∈ I .

Example

Let G = 〈{S}, {S → SS + (S) + ε}, {S}〉; this grammar is CC.

 G is generated by () G ε

(()())() G (())() G ()() G () G ε = ϑG (S)

therefore: (()())() ∈ L(G).

From)()(, we cannot reach ε; thus,)()(6∈ L(G).

14

Deciding congruence

Write IG for the set of words irreducible by G .

Lemma

We can create a DPDA Mw such that L(Mw) = {u]v : uwv ∈ L(G), u, v ∈ IG}.

Lemma

L(Mw) = L(Mx) if and only if w ≡L(G) x.

Decidable (Sénizergues 1997)

Theorem

Let w , x ∈ Σ∗. We can decide whether w ≡L(G) x.

15

Deciding congruence

Write IG for the set of words irreducible by G .

Lemma

We can create a DPDA Mw such that L(Mw) = {u]v : uwv ∈ L(G), u, v ∈ IG}.

Lemma

L(Mw) = L(Mx) if and only if w ≡L(G) x.

Decidable (Sénizergues 1997)

Theorem

Let w , x ∈ Σ∗. We can decide whether w ≡L(G) x.

15

Deciding congruence

Write IG for the set of words irreducible by G .

Lemma

We can create a DPDA Mw such that L(Mw) = {u]v : uwv ∈ L(G), u, v ∈ IG}.

Lemma

L(Mw) = L(Mx) if and only if w ≡L(G) x.

Decidable (Sénizergues 1997)Theorem

Let w , x ∈ Σ∗. We can decide whether w ≡L(G) x.

15

Deciding congruence

Write IG for the set of words irreducible by G .

Lemma

We can create a DPDA Mw such that L(Mw) = {u]v : uwv ∈ L(G), u, v ∈ IG}.

Lemma

L(Mw) = L(Mx) if and only if w ≡L(G) x.

Decidable (Sénizergues 1997)

Theorem

Let w , x ∈ Σ∗. We can decide whether w ≡L(G) x.

15

Deciding congruence

Write IG for the set of words irreducible by G .

Lemma

We can create a DPDA Mw such that L(Mw) = {u]v : uwv ∈ L(G), u, v ∈ IG}.

Lemma

L(Mw) = L(Mx) if and only if w ≡L(G) x.

Decidable (Sénizergues 1997)

Theorem

Let w , x ∈ Σ∗. We can decide whether w ≡L(G) x.

15

Deciding equivalence

Analogous to a result about NTS grammars,8 we find

Lemma

Let G1 = 〈V1,→1, I1〉 and G2 = 〈V2,→2, I2〉 be CC.

Then L(G1) = L(G2) if and only if

(i) for all A ∈ I1, it holds that ϑG1(A) ∈ L(G2) (and vice versa)

(ii) for all pairs u G1 v generating G1 , also u ≡L(G2) v (and vice versa)

Finitely many Decidable

Finitely many DecidableTheorem

Let G1 and G2 be CC. We can decide whether L(G1) = L(G2).

8Sénizergues 1985.
16

Deciding equivalence

Analogous to a result about NTS grammars,8 we find

Lemma

Let G1 = 〈V1,→1, I1〉 and G2 = 〈V2,→2, I2〉 be CC.

Then L(G1) = L(G2) if and only if

(i) for all A ∈ I1, it holds that ϑG1(A) ∈ L(G2) (and vice versa)

(ii) for all pairs u G1 v generating G1 , also u ≡L(G2) v (and vice versa)
Finitely many

Decidable

Finitely many DecidableTheorem

Let G1 and G2 be CC. We can decide whether L(G1) = L(G2).

8Sénizergues 1985.
16

Deciding equivalence

Analogous to a result about NTS grammars,8 we find

Lemma

Let G1 = 〈V1,→1, I1〉 and G2 = 〈V2,→2, I2〉 be CC.

Then L(G1) = L(G2) if and only if

(i) for all A ∈ I1, it holds that ϑG1(A) ∈ L(G2) (and vice versa)

(ii) for all pairs u G1 v generating G1 , also u ≡L(G2) v (and vice versa)

Finitely many

Decidable

Finitely many DecidableTheorem

Let G1 and G2 be CC. We can decide whether L(G1) = L(G2).

8Sénizergues 1985.
16

Deciding equivalence

Analogous to a result about NTS grammars,8 we find

Lemma

Let G1 = 〈V1,→1, I1〉 and G2 = 〈V2,→2, I2〉 be CC.

Then L(G1) = L(G2) if and only if

(i) for all A ∈ I1, it holds that ϑG1(A) ∈ L(G2) (and vice versa)

(ii) for all pairs u G1 v generating G1 , also u ≡L(G2) v (and vice versa)

Finitely many Decidable

Finitely many

DecidableTheorem

Let G1 and G2 be CC. We can decide whether L(G1) = L(G2).

8Sénizergues 1985.
16

Deciding equivalence

Analogous to a result about NTS grammars,8 we find

Lemma

Let G1 = 〈V1,→1, I1〉 and G2 = 〈V2,→2, I2〉 be CC.

Then L(G1) = L(G2) if and only if

(i) for all A ∈ I1, it holds that ϑG1(A) ∈ L(G2) (and vice versa)

(ii) for all pairs u G1 v generating G1 , also u ≡L(G2) v (and vice versa)

Finitely many Decidable

Finitely many

Decidable

Theorem

Let G1 and G2 be CC. We can decide whether L(G1) = L(G2).

8Sénizergues 1985.
16

Deciding equivalence

Analogous to a result about NTS grammars,8 we find

Lemma

Let G1 = 〈V1,→1, I1〉 and G2 = 〈V2,→2, I2〉 be CC.

Then L(G1) = L(G2) if and only if

(i) for all A ∈ I1, it holds that ϑG1(A) ∈ L(G2) (and vice versa)

(ii) for all pairs u G1 v generating G1 , also u ≡L(G2) v (and vice versa)

Finitely many Decidable

Finitely many Decidable

Theorem

Let G1 and G2 be CC. We can decide whether L(G1) = L(G2).

8Sénizergues 1985.
16

Deciding Clark-congruentiality

Given a congruence ≡, we can extend it a congruence ≡̂ on (Σ ∪ V)∗, by stipulating

ϑG (α) ≡ ϑG (β)

α ≡̂ β

Lemma

Let ≡ be a congruence on Σ∗.

The following are equivalent:

(i) For all A ∈ V and w , x ∈ L(G ,A), it holds that w ≡ x.

(ii) For all productions A→ α, it holds that A ≡̂ α

17

Deciding Clark-congruentiality

Given a congruence ≡, we can extend it a congruence ≡̂ on (Σ ∪ V)∗, by stipulating

ϑG (α) ≡ ϑG (β)

α ≡̂ β

Lemma

Let ≡ be a congruence on Σ∗.

The following are equivalent:

(i) For all A ∈ V and w , x ∈ L(G ,A), it holds that w ≡ x.

(ii) For all productions A→ α, it holds that A ≡̂ α

17

Deciding Clark-congruentiality

Theorem

If ≡L(G) is decidable, then we can decide whether G is CC.

Proof.

For A→ α, check whether A ≡̂L(G) α, i.e., whether ϑG (A) ≡L(G) ϑG (α).

Corollary

If L(G) is a deterministic CFL, then it is decidable whether G is CC.

18

Deciding Clark-congruentiality

Theorem

If ≡L(G) is decidable, then we can decide whether G is CC.

Proof.

For A→ α, check whether A ≡̂L(G) α, i.e., whether ϑG (A) ≡L(G) ϑG (α).

Corollary

If L(G) is a deterministic CFL, then it is decidable whether G is CC.

18

Conclusion

So, are CC languages “MAT-teachable”?

Yes. . . but there is a slight mismatch:

I (Clark 2010) assumes an extended MAT.

I That is, hypothesis grammars may not be CC!

Two plausible fixes:

I Adjust learning algorithm to have CC grammars as hypotheses.

I Extend decision procedure, requiring only one grammar to be CC.

19

Conclusion

So, are CC languages “MAT-teachable”?

Yes. . . but there is a slight mismatch:

I (Clark 2010) assumes an extended MAT.

I That is, hypothesis grammars may not be CC!

Two plausible fixes:

I Adjust learning algorithm to have CC grammars as hypotheses.

I Extend decision procedure, requiring only one grammar to be CC.

19

Conclusion

So, are CC languages “MAT-teachable”?

Yes. . . but there is a slight mismatch:

I (Clark 2010) assumes an extended MAT.

I That is, hypothesis grammars may not be CC!

Two plausible fixes:

I Adjust learning algorithm to have CC grammars as hypotheses.

I Extend decision procedure, requiring only one grammar to be CC.

19

Further work

Many open questions:

I Are CC grammars more expressive than pre-NTS grammars?

I Is the language of every CC grammar a DCFL?

I Is it decidable whether a given grammar is CC in general?

20

Further work

Many open questions:

I Are CC grammars more expressive than pre-NTS grammars?

I Is the language of every CC grammar a DCFL?

I Is it decidable whether a given grammar is CC in general?

20

Further work

Many open questions:

I Are CC grammars more expressive than pre-NTS grammars?

I Is the language of every CC grammar a DCFL?

I Is it decidable whether a given grammar is CC in general?

20

Bonus: grammar to DPDA

Lemma

Let G be CC, and let R be regular.

We can create a CC grammar GR such that L(GR) = L(G) ∩ R.

Lemma

Let h : Σ∗ → Σ∗ be a strictly alphabetic morphism, that is, h(a) ∈ Σ for all a ∈ Σ.

We can create a CC grammar Gh such that L(Gh) = h−1(L(G)).

21

Bonus: grammar to DPDA

Lemma

Let G be CC, and let R be regular.

We can create a CC grammar GR such that L(GR) = L(G) ∩ R.

Lemma

Let h : Σ∗ → Σ∗ be a strictly alphabetic morphism, that is, h(a) ∈ Σ for all a ∈ Σ.

We can create a CC grammar Gh such that L(Gh) = h−1(L(G)).

21

Bonus: grammar to DPDA

For a ∈ Σ, add ā to Σ.

Let h : Σ→ Σ be such that h(a) = h(ā) = a.

Create Gh such that L(Gh) = h−1(L(G)).

Intuition

Gh is the same as G , but positions in every word can be “marked” by ¯.

22

Bonus: grammar to DPDA

For a ∈ Σ, add ā to Σ.

Let h : Σ→ Σ be such that h(a) = h(ā) = a.

Create Gh such that L(Gh) = h−1(L(G)).

Intuition

Gh is the same as G , but positions in every word can be “marked” by ¯.

22

Bonus: grammar to DPDA

Note that IG is a regular language.

Create Gw such that L(Gw) = L(Gh) ∩ IG w̄IG .

Now Gw = {uw̄v : uwv ∈ L(G), u, v ∈ IG}.

Intuition

L(Gw) has words in L(G) with w as a marked substring, with context reduced by G .

23

Bonus: grammar to DPDA

Note that IG is a regular language.

Create Gw such that L(Gw) = L(Gh) ∩ IG w̄IG .

Now Gw = {uw̄v : uwv ∈ L(G), u, v ∈ IG}.

Intuition

L(Gw) has words in L(G) with w as a marked substring, with context reduced by G .

23

Bonus: grammar to DPDA

Lemma

Without loss of generality, every rule generating Gw overlaps and preserves w̄ .

We can now create a reduction G [w] and a finite set Sw such that

I Every rule generating G [w] contains and preserves].

I {x ∈ Σ∗ : x G [w] y ∈ Sw} = {u]v : uwv ∈ L(G), u, v ∈ IG}

The DPDA Mw acts by reading u]v up to], putting the input on the stack. Then:

I Pop from the stack or read from input into two buffers (encoded in state).

I Whenever possible, reduce according to the rules from G [w].

I When the buffer resembles Sw and the input and stack are empty, accept.

With some analysis, we find that L(Mw) = {u]v : uwv ∈ L(G), u, v ∈ IG}.

24

Bonus: grammar to DPDA

Lemma

Without loss of generality, every rule generating Gw overlaps and preserves w̄ .

We can now create a reduction G [w] and a finite set Sw such that

I Every rule generating G [w] contains and preserves].

I {x ∈ Σ∗ : x G [w] y ∈ Sw} = {u]v : uwv ∈ L(G), u, v ∈ IG}

The DPDA Mw acts by reading u]v up to], putting the input on the stack. Then:

I Pop from the stack or read from input into two buffers (encoded in state).

I Whenever possible, reduce according to the rules from G [w].

I When the buffer resembles Sw and the input and stack are empty, accept.

With some analysis, we find that L(Mw) = {u]v : uwv ∈ L(G), u, v ∈ IG}.

24

Bonus: grammar to DPDA

Lemma

Without loss of generality, every rule generating Gw overlaps and preserves w̄ .

We can now create a reduction G [w] and a finite set Sw such that

I Every rule generating G [w] contains and preserves].

I {x ∈ Σ∗ : x G [w] y ∈ Sw} = {u]v : uwv ∈ L(G), u, v ∈ IG}

The DPDA Mw acts by reading u]v up to], putting the input on the stack. Then:

I Pop from the stack or read from input into two buffers (encoded in state).

I Whenever possible, reduce according to the rules from G [w].

I When the buffer resembles Sw and the input and stack are empty, accept.

With some analysis, we find that L(Mw) = {u]v : uwv ∈ L(G), u, v ∈ IG}.

24

Bonus: grammar to DPDA

Lemma

Without loss of generality, every rule generating Gw overlaps and preserves w̄ .

We can now create a reduction G [w] and a finite set Sw such that

I Every rule generating G [w] contains and preserves].

I {x ∈ Σ∗ : x G [w] y ∈ Sw} = {u]v : uwv ∈ L(G), u, v ∈ IG}

The DPDA Mw acts by reading u]v up to], putting the input on the stack. Then:

I Pop from the stack or read from input into two buffers (encoded in state).

I Whenever possible, reduce according to the rules from G [w].

I When the buffer resembles Sw and the input and stack are empty, accept.

With some analysis, we find that L(Mw) = {u]v : uwv ∈ L(G), u, v ∈ IG}.

24

Bonus: grammar to DPDA

Lemma

Without loss of generality, every rule generating Gw overlaps and preserves w̄ .

We can now create a reduction G [w] and a finite set Sw such that

I Every rule generating G [w] contains and preserves].

I {x ∈ Σ∗ : x G [w] y ∈ Sw} = {u]v : uwv ∈ L(G), u, v ∈ IG}

The DPDA Mw acts by reading u]v up to], putting the input on the stack. Then:

I Pop from the stack or read from input into two buffers (encoded in state).

I Whenever possible, reduce according to the rules from G [w].

I When the buffer resembles Sw and the input and stack are empty, accept.

With some analysis, we find that L(Mw) = {u]v : uwv ∈ L(G), u, v ∈ IG}.

24

Bonus: grammar to DPDA

Lemma

Without loss of generality, every rule generating Gw overlaps and preserves w̄ .

We can now create a reduction G [w] and a finite set Sw such that

I Every rule generating G [w] contains and preserves].

I {x ∈ Σ∗ : x G [w] y ∈ Sw} = {u]v : uwv ∈ L(G), u, v ∈ IG}

The DPDA Mw acts by reading u]v up to], putting the input on the stack. Then:

I Pop from the stack or read from input into two buffers (encoded in state).

I Whenever possible, reduce according to the rules from G [w].

I When the buffer resembles Sw and the input and stack are empty, accept.

With some analysis, we find that L(Mw) = {u]v : uwv ∈ L(G), u, v ∈ IG}.

24

Bonus: grammar to DPDA

Lemma

Without loss of generality, every rule generating Gw overlaps and preserves w̄ .

We can now create a reduction G [w] and a finite set Sw such that

I Every rule generating G [w] contains and preserves].

I {x ∈ Σ∗ : x G [w] y ∈ Sw} = {u]v : uwv ∈ L(G), u, v ∈ IG}

The DPDA Mw acts by reading u]v up to], putting the input on the stack. Then:

I Pop from the stack or read from input into two buffers (encoded in state).

I Whenever possible, reduce according to the rules from G [w].

I When the buffer resembles Sw and the input and stack are empty, accept.

With some analysis, we find that L(Mw) = {u]v : uwv ∈ L(G), u, v ∈ IG}.

24

	Introduction
	Context
	Preliminaries
	Deciding congruence
	Deciding equivalence
	Deciding Clark-congruentiality
	Conclusion
	Further work
	Appendix
	Bonus: grammar to DPDA

