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Introduction

Suppose you know the following Japanese phrase:
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Suppose you know the following Japanese phrase:

SIS TR The cat sleeps in the chair.

You also know that dog is A. Now, you can form:

RIIEFTHRS  The dog sleeps in the chair.
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This works because i and A are nouns.
Replacing nouns (probably) preserves grammatical correctness.

J and K are (almost) syntactically congruent:

ulifiv € Japanese “<=" wuKRv € Japanese
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Introduction

Idea: use syntactic congruence to drive learning.!
When (for all we know) uwv € L <= uxv € L, presume w = x.

... but how to represent the language?

1Clark 2010.



Introduction

Definition (Informal)
A grammar is Clark-congruential (CC) if words derived from the same symbol are

syntactically congruent for its language.

A language is CC when there exists a CC grammar that describes it.



Introduction

Definition (Informal)

A grammar is Clark-congruential (CC) if words derived from the same symbol are
syntactically congruent for its language.

A language is CC when there exists a CC grammar that describes it.

Consider these grammars for L = {a, b}

Gi: S—»SS+a+b
G: S—TS54+a+b, T —>a+b+e



Introduction

Definition (Informal)

A grammar is Clark-congruential (CC) if words derived from the same symbol are
syntactically congruent for its language.

A language is CC when there exists a CC grammar that describes it.

Consider these grammars for L = {a, b}

Gi: S—»SS+a+b
Gy: S—TS+a+b, T —at+b+e

If S derives w and x in Gy, then uwv € L implies uxv € L — G is CC.



Introduction

Definition (Informal)

A grammar is Clark-congruential (CC) if words derived from the same symbol are
syntactically congruent for its language.

A language is CC when there exists a CC grammar that describes it.

Consider these grammars for L = {a, b}

Gi: S—»SS+a+b
G: S—TS54+a+b, T —>a+b+e

If S derives w and x in Gy, then uwv € L implies uxv € L — G is CC.

However: T derives a and € in G,. Now, a € L but e ¢ L — Gy is not CC.



Introduction

Let G be a CC grammar describing L.



Introduction

Let G be a CC grammar describing L.

In the minimally adequate teacher (MAT) model, the learner can query:
> Given w € ¥*, does w € L(G) hold?
» Given a grammar H, does L(G) = L(H) hold? If not, give a counterexample.



Introduction

Let G be a CC grammar describing L.

In the minimally adequate teacher (MAT) model, the learner can query:
> Given w € ¥*, does w € L(G) hold?
» Given a grammar H, does L(G) = L(H) hold? If not, give a counterexample.

Theorem (Clark 2010)

Let L be a CC language; L is “MAT-learnable”.
That is, given a MAT for L, we can construct a CC grammar for L.



Introduction

Let G be a CC grammar describing L.

In the minimally adequate teacher (MAT) model, the learner can query:
> Given w € ¥*, does w € L(G) hold?
» Given a grammar H, does L(G) = L(H) hold? If not, give a counterexample.

Theorem (Clark 2010)

Let L be a CC language; L is “MAT-learnable”.
That is, given a MAT for L, we can construct a CC grammar for L.

Let L be a CC language; is L “MAT-teachable"?
That is, given a CC grammar for L, can we construct a MAT for L?



Introduction

Let G be a CC grammar describing L.

In the minimally adequate teacher (MAT) model, the learner can query:
> Given w € ¥*, does w € L(G) hold?
» Given a grammar H, does L(G) = L(H) hold? If not, give a counterexample.

Theorem (Clark 2010) Is this decidable?

Let L be a CC language; L is “MAT-learnable”.
That is, given a MAT for L, we can construct a CC grammar for L.

Let L be a CC language; is L “MAT-teachable"?
That is, given a CC grammar for L, can we construct a MAT for L?



Context

Equivalence problem

Given grammars Gj and Gy, does L(Gy) = L(Gy) hold?

2Bar-Hillel, Perles, and Shamir 1961.



Equivalence problem

Given grammars Gj and Gy, does L(Gy) = L(Gy) hold?

Congruence problem

Given a grammar G, and w,x € ¥*, are w and x syntactically congruent for L(G)?

2Bar-Hillel, Perles, and Shamir 1961.



Equivalence problem

Given grammars Gj and Gy, does L(Gy) = L(Gy) hold?

Congruence problem

Given a grammar G, and w,x € ¥*, are w and x syntactically congruent for L(G)?

Equivalence and congruence are undecidable for grammars in general.?

2Bar-Hillel, Perles, and Shamir 1961.



Equivalence problem

Given grammars Gj and Gy, does L(Gy) = L(Gy) hold?

Congruence problem

Given a grammar G, and w,x € ¥*, are w and x syntactically congruent for L(G)?

Equivalence and congruence are undecidable for grammars in general.?

Recognition problem

Given a class of grammars C and a grammar G, does G belong to C?

2Bar-Hillel, Perles, and Shamir 1961.
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A congruence on L* is an equivalence = on X* such that

WEW, XEX/

WX = W/X/
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Preliminaries

A congruence on L* is an equivalence = on X* such that

/ /

w=w X=X

WX = W/X/

Every language L induces a syntactic congruence =;:

VYuve X . uwv el < uxvel

w=| X

10
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Preliminaries

A Context-Free Grammar (CFG) is a tuple G = (V,—, /).

aBye (XU V)" B—p
aBy =¢ apy

L(G,a)={weX :a=;w} L(G) = UL(G,A)
Ael

Definition (More formal)
We say G is CC when for A€ V and w,x € L(G, A), we have w =g x.
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Preliminaries

We assume a total order < on X.

This order extends to a total order on X*:
» If w is shorter than x, then w < x.

> If w and x are of equal length, compare lexicographically.

For a € (X U V)" with L(G,«) # 0, write ¥g () for the <-minimum of L(G, a).

12
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Deciding congruence

Let G be CC.
We mimic an earlier method to decide congruence.’
Let ~~¢ be the smallest rewriting relation such that
A— o L(G,a) #0
Ve(a) ~6 V6(A)

Lemma

If w~~¢ x, then w =) x.

"Autebert and Boasson 1992.
13



Deciding congruence

Lemma
w € L(G) if and only if w ~~¢ 9¢(A) for some A € |.
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Deciding congruence

Lemma
w € L(G) if and only if w ~~¢ 9¢(A) for some A € |.

Let G = ({S},{S — SS + (S) +¢€},{S}); this grammar is CC.
~>¢ is generated by () ~g €
(OO 6 (OO ~6 OO w6 O ~ge=16(S)

therefore: (OO O) O € L(G).
From ) O) (, we cannot reach ¢; thus, ) O ( & L(G).
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Deciding congruence

Write Z¢ for the set of words irreducible by ~~¢.

Lemma
We can create a DPDA M,, such that L(M,,) = {utv : uwv € L(G), u,v € I¢}.

Lemma
L(My) = L(My) if and only if w = (g) x.

Decidable (Sénizergues 1997)
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Deciding congruence

Write Z¢ for the set of words irreducible by ~~¢.

Lemma
We can create a DPDA M,, such that L(M,,) = {utv : uwv € L(G), u,v € I¢}.

Lemma
L(My) = L(My) if and only if w = (g) x.

Theorem
Let w,x € £*. We can decide whether w = () x.

15



Deciding equivalence

Analogous to a result about NTS grammars,® we find
Lemma
Let G = <V1,—)1, Il> and G, = <V2,—>2, I2> be CC.
Then L(Gy) = L(Gy) if and only if
(i) for all A € h, it holds that ¥¢, (A) € L(Ga) (and vice versa)

(ii) for all pairs u ~¢, v generating ~~¢,, also u=(g,) v (and vice versa)
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Deciding equivalence

Analogous to a result about NTS grammars,® we find
Lemma
Let G = <V1,—)1, Il> and G, = <V2,—>2, I2> be CC.
Then L(Gy) = L(Gy) if and only if
(i) for all A € h, it holds that ¥¢, (A) € L(Ga) (and vice versa)

(ii) for all pairs u ~¢, v generating ~~¢,, also u=(g,) v (and vice versa)

Theorem
Let Gy and G, be CC. We can decide whether L(G1) = L(G).

8Sénizergues 1985.
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Deciding Clark-congruentiality

Given a congruence =, we can extend it a congruence = on (X U V)", by stipulating

Vg(a) = 96(P)
a=p
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Deciding Clark-congruentiality

Given a congruence =, we can extend it a congruence = on (X U V)", by stipulating

Vg(a) = 96(P)
a=p

Lemma
Let = be a congruence on ¥*.

The following are equivalent:
(i) Forall A€ V and w,x € L(G,A), it holds that w = x.

(i) For all productions A — «, it holds that A = «

17



Deciding Clark-congruentiality

Theorem

If =1 () is decidable, then we can decide whether G is CC.
Proof.

For A — a, check whether A =) , i.e., whether ¥6(A) =) V6(a). O
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Deciding Clark-congruentiality

Theorem

If =1 () is decidable, then we can decide whether G is CC.

Proof.

For A — a, check whether A =) , i.e., whether ¥6(A) =) V6(a). O
Corollary

If L(G) is a deterministic CFL, then it is decidable whether G is CC.

18
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Conclusion

So, are CC languages "MAT-teachable”?

Yes. . . but there is a slight mismatch:
» (Clark 2010) assumes an extended MAT.
» That is, hypothesis grammars may not be CC!

Two plausible fixes:
» Adjust learning algorithm to have CC grammars as hypotheses.

» Extend decision procedure, requiring only one grammar to be CC.

19
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Many open questions:
» Are CC grammars more expressive than pre-NTS grammars?
» Is the language of every CC grammar a DCFL?

» Is it decidable whether a given grammar is CC in general?

20
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We can create a CC grammar Gg such that L(Gr) = L(G) N R.
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Bonus: grammar to DPDA

Lemma
Let G be CC, and let R be regular.

We can create a CC grammar Gg such that L(Gr) = L(G) N R.

Lemma
Let h: X* — X* be a strictly alphabetic morphism, that is, h(a) € ¥ for all a € ¥.

We can create a CC grammar G" such that L(G") = h=1(L(G)).
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Bonus: grammar to DPDA

Forac X, add ato X.
Let h: X — X be such that h(a) = h(3) = a.
Create G" such that L(G") = h™1(L(G)).
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Bonus: grammar to DPDA

Forac X, add 3to .
Let h: X — X be such that h(a) = h(3) = a.
Create G" such that L(G") = h=1(L(G)).

G" is the same as G, but positions in every word can be “marked” by ~.
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Bonus: grammar to DPDA

Note that Z¢ is a regular language.
Create G,, such that L(G,) = L(G") N ZewZs.
Now G, = {uwv : uwv € L(G), u,v € Zs}.

L(Gy) has words in L(G) with w as a marked substring, with context reduced by ~~¢.
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Without loss of generality, every rule generating ~+¢, overlaps and preserves w.
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» When the buffer resembles S,, and the input and stack are empty, accept.
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Bonus: grammar to DPDA

Lemma
Without loss of generality, every rule generating ~+¢, overlaps and preserves w.

We can now create a reduction ~»¢[,] and a finite set S, such that
> Every rule generating ~» |, contains and preserves f.
> {Xx €Y x g ¥ € Sw} = {ullv:uwv € L(G), u,v € Ig}

The DPDA M,, acts by reading ufiv up to fi, putting the input on the stack. Then:
» Pop from the stack or read from input into two buffers (encoded in state).
> Whenever possible, reduce according to the rules from ~ g,
» When the buffer resembles S,, and the input and stack are empty, accept.

With some analysis, we find that L(M,,) = {utv : uwv € L(G), u,v € Zg}.
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