Decision problems for Clark-congruential languages

Makoto Kanazawa¹ Tobias Kappé²

¹Hosei University, Tokyo

²University College London

Work performed at the National Institute of Informatics, Tokyo.

ICGI, September 5, 2018

1

Suppose you know the following Japanese phrase:

猫は椅子で眠る The <u>cat</u> sleeps in the chair.

Suppose you know the following Japanese phrase:

猫は椅子で眠る The <u>cat</u> sleeps in the chair.

You also know that *dog* is 犬. Now, you can form:

<u>大</u>は椅子で眠る The dog sleeps in the chair.

This works because and <math><math>are nouns.

This works because and <math><math>are nouns.

Replacing nouns (probably) preserves grammatical correctness.

This works because and <math><math>are nouns.

Replacing nouns (probably) preserves grammatical correctness.

猫 and 犬 are (almost) *syntactically congruent*:

$$u \amalg v \in Japanese$$
 " \iff " $u \not \prec v \in Japanese$

Idea: use syntactic congruence to drive learning.¹

¹Clark 2010.

Idea: use syntactic congruence to drive learning.¹

When (for all we know) $uwv \in L \iff uxv \in L$, presume $w \equiv_L x$.

Idea: use syntactic congruence to drive learning.¹

When (for all we know) $uwv \in L \iff uxv \in L$, presume $w \equiv_L x$.

... but how to represent the language?

A grammar is *Clark-congruential* (*CC*) if words derived from the same symbol are syntactically congruent for its language.

A language is CC when there exists a CC grammar that describes it.

A grammar is *Clark-congruential* (*CC*) if words derived from the same symbol are syntactically congruent for its language.

A language is CC when there exists a CC grammar that describes it.

Example

Consider these grammars for $L = \{a, b\}^+$:

$$G_1: S o SS + a + b$$

 $G_2: S o TS + a + b, T o a + b + e$

A grammar is *Clark-congruential* (*CC*) if words derived from the same symbol are syntactically congruent for its language.

A language is CC when there exists a CC grammar that describes it.

Example

Consider these grammars for $L = \{a, b\}^+$:

$$\begin{array}{ll} G_1: & S \to SS + a + b \\ G_2: & S \to TS + a + b, & T \to a + b + \epsilon \end{array}$$

If S derives w and x in G_1 , then $uwv \in L$ implies $uxv \in L - G_1$ is CC.

A grammar is *Clark-congruential* (*CC*) if words derived from the same symbol are syntactically congruent for its language.

A language is CC when there exists a CC grammar that describes it.

Example

Consider these grammars for $L = \{a, b\}^+$:

$$\begin{array}{ll} G_1: & S \to SS + a + b \\ G_2: & S \to TS + a + b, & T \to a + b + \epsilon \end{array}$$

If S derives w and x in G_1 , then $uwv \in L$ implies $uxv \in L - G_1$ is CC. However: T derives a and ϵ in G_2 . Now, $a \in L$ but $\epsilon \notin L - G_2$ is not CC.

Let G be a CC grammar describing L.

Let G be a CC grammar describing L.

In the *minimally adequate teacher* (MAT) model, the learner can query:

- Given $w \in \Sigma^*$, does $w \in L(G)$ hold?
- Given a grammar H, does L(G) = L(H) hold? If not, give a counterexample.

Let G be a CC grammar describing L.

In the *minimally adequate teacher* (MAT) model, the learner can query:

- Given $w \in \Sigma^*$, does $w \in L(G)$ hold?
- Given a grammar H, does L(G) = L(H) hold? If not, give a counterexample.

Theorem (Clark 2010)

Let L be a CC language; L is "MAT-learnable". That is, given a MAT for L, we can construct a CC grammar for L.

Let G be a CC grammar describing L.

In the *minimally adequate teacher* (*MAT*) model, the learner can query:

- Given $w \in \Sigma^*$, does $w \in L(G)$ hold?
- Given a grammar H, does L(G) = L(H) hold? If not, give a counterexample.

Theorem (Clark 2010)

Let L be a CC language; L is "MAT-learnable". That is, given a MAT for L, we can construct a CC grammar for L.

Question

Let *L* be a CC language; is *L* "MAT-teachable"? That is, given a CC grammar for *L*, can we construct a MAT for *L*?

Let G be a CC grammar describing L.

In the *minimally adequate teacher* (MAT) model, the learner can query:

- Given $w \in \Sigma^*$, does $w \in L(G)$ hold?
- Given a grammar H, does L(G) = L(H) hold? If not, give a counterexample.

Theorem (Clark 2010)

Is this decidable?

Let L be a CC language; L is "MAT-learnable". That is, given a MAT for L, we can construct a CC grammar for L.

Question

Let *L* be a CC language; is *L* "MAT-teachable"? That is, given a CC grammar for *L*, can we construct a MAT for *L*?

Given grammars G_1 and G_2 , does $L(G_1) = L(G_2)$ hold?

²Bar-Hillel, Perles, and Shamir 1961.

Given grammars G_1 and G_2 , does $L(G_1) = L(G_2)$ hold?

Congruence problem

Given a grammar G, and $w, x \in \Sigma^*$, are w and x syntactically congruent for L(G)?

²Bar-Hillel, Perles, and Shamir 1961.

Given grammars G_1 and G_2 , does $L(G_1) = L(G_2)$ hold?

Congruence problem

Given a grammar G, and $w, x \in \Sigma^*$, are w and x syntactically congruent for L(G)?

Equivalence and congruence are undecidable for grammars in general.²

²Bar-Hillel, Perles, and Shamir 1961.

Given grammars G_1 and G_2 , does $L(G_1) = L(G_2)$ hold?

Congruence problem

Given a grammar G, and $w, x \in \Sigma^*$, are w and x syntactically congruent for L(G)?

Equivalence and congruence are undecidable for grammars in general.²

Recognition problem

Given a class of grammars C and a grammar G, does G belong to C?

²Bar-Hillel, Perles, and Shamir 1961.

CC languages

	Congruence	Equivalence	Recognition
NTS	✓ ³	√3	✓3,4
Pre-NTS	✓5	✓ ⁵	<mark>×</mark> 6

³Sénizergues 1985.
⁴Engelfriet 1994.
⁵Autebert and Boasson 1992.
⁶Zhang 1992.

	Congruence	Equivalence	Recognition
NTS	√ ³	✓ ³	✓3,4
Pre-NTS	✓ ⁵	✓ ⁵	<mark>×</mark> 6
Clark-congruential	1	1	†

³Sénizergues 1985.
⁴Engelfriet 1994.
⁵Autebert and Boasson 1992.
⁶Zhang 1992.

A congruence on Σ^* is an equivalence \equiv on Σ^* such that

$$\frac{w \equiv w' \qquad x \equiv x'}{wx \equiv w'x'}$$

A congruence on Σ^* is an equivalence \equiv on Σ^* such that

$$\frac{w \equiv w' \qquad x \equiv x'}{wx \equiv w'x'}$$

Every language *L* induces a *syntactic congruence* \equiv_L :

$$\frac{\forall u, v \in \Sigma^*. \ uwv \in L \iff uxv \in L}{w \equiv_L x}$$

$$\frac{\alpha B\gamma \in (\Sigma \cup V)^* \quad B \to \beta}{\alpha B\gamma \Rightarrow_{\mathcal{G}} \alpha \beta \gamma}$$

$$\frac{\alpha B\gamma \in (\Sigma \cup V)^* \quad B \to \beta}{\alpha B\gamma \Rightarrow_{\mathcal{G}} \alpha \beta \gamma}$$

$$L(G,\alpha) = \{ w \in \Sigma^* : \alpha \Rightarrow^*_G w \}$$

$$\frac{\alpha B\gamma \in (\Sigma \cup V)^* \quad B \to \beta}{\alpha B\gamma \Rightarrow_{\mathcal{G}} \alpha \beta \gamma}$$

$$L(G,\alpha) = \{ w \in \Sigma^* : \alpha \Rightarrow^*_G w \} \qquad \qquad L(G) = \bigcup_{A \in I} L(G,A)$$

$$\frac{\alpha B\gamma \in (\Sigma \cup V)^* \quad B \to \beta}{\alpha B\gamma \Rightarrow_{\mathcal{G}} \alpha \beta \gamma}$$

$$L(G,\alpha) = \{ w \in \Sigma^* : \alpha \Rightarrow^*_G w \} \qquad \qquad L(G) = \bigcup_{A \in I} L(G,A)$$

Definition (More formal)

We say G is CC when for $A \in V$ and $w, x \in L(G, A)$, we have $w \equiv_{L(G)} x$.

We assume a total order \preceq on $\Sigma.$

We assume a total order \preceq on $\Sigma.$

This order extends to a total order on Σ^* :

- lf w is shorter than x, then $w \leq x$.
- ▶ If w and x are of equal length, compare lexicographically.
We assume a total order \preceq on Σ .

This order extends to a total order on Σ^* :

- lf w is shorter than x, then $w \leq x$.
- ▶ If w and x are of equal length, compare lexicographically.

For $\alpha \in (\Sigma \cup V)^*$ with $L(G, \alpha) \neq \emptyset$, write $\vartheta_G(\alpha)$ for the \preceq -minimum of $L(G, \alpha)$.

Let G be CC.

We mimic an earlier method to decide congruence.⁷

⁷Autebert and Boasson 1992.

Let G be CC.

We mimic an earlier method to decide congruence.⁷

Let \rightsquigarrow_G be the smallest rewriting relation such that

 $\frac{A \to \alpha \qquad \mathcal{L}(G, \alpha) \neq \emptyset}{\vartheta_G(\alpha) \leadsto_G \vartheta_G(A)}$

⁷Autebert and Boasson 1992.

Let G be CC.

We mimic an earlier method to decide congruence.⁷

Let \rightsquigarrow_G be the smallest rewriting relation such that

 $\frac{A \to \alpha \qquad \mathcal{L}(G, \alpha) \neq \emptyset}{\vartheta_G(\alpha) \leadsto_G \vartheta_G(A)}$

Lemma

If $w \rightsquigarrow_G x$, then $w \equiv_{L(G)} x$.

⁷Autebert and Boasson 1992.

$$w \in L(G)$$
 if and only if $w \rightsquigarrow_G \vartheta_G(A)$ for some $A \in I$.

 $w \in L(G)$ if and only if $w \rightsquigarrow_G \vartheta_G(A)$ for some $A \in I$.

Example

Let $G = \langle \{S\}, \{S \rightarrow SS + (S) + \epsilon\}, \{S\} \rangle$; this grammar is CC.

 $w \in L(G)$ if and only if $w \rightsquigarrow_G \vartheta_G(A)$ for some $A \in I$.

(()())()

Example

Let $G = \langle \{S\}, \{S \to SS + (S) + \epsilon\}, \{S\} \rangle$; this grammar is CC. \rightsquigarrow_G is generated by () $\rightsquigarrow_G \epsilon$

 $w \in L(G)$ if and only if $w \rightsquigarrow_G \vartheta_G(A)$ for some $A \in I$.

Example

Let $G = \langle \{S\}, \{S \to SS + (S) + \epsilon\}, \{S\} \rangle$; this grammar is CC.

```
\leadsto_{{\cal G}} is generated by () \leadsto_{{\cal G}} \epsilon
```

 $(()\underline{()})() \rightsquigarrow_{G} (\underline{()})()$

 $w \in L(G)$ if and only if $w \rightsquigarrow_G \vartheta_G(A)$ for some $A \in I$.

Example

Let $G = \langle \{S\}, \{S \rightarrow SS + (S) + \epsilon\}, \{S\} \rangle$; this grammar is CC.

 $\leadsto_{{\cal G}}$ is generated by () $\leadsto_{{\cal G}} \epsilon$

 $(()\underline{()})() \rightsquigarrow_{G} (\underline{()})() \rightsquigarrow_{G} ()\underline{()}$

 $w \in L(G)$ if and only if $w \rightsquigarrow_G \vartheta_G(A)$ for some $A \in I$.

Example

Let $G = \langle \{S\}, \{S \rightarrow SS + (S) + \epsilon\}, \{S\} \rangle$; this grammar is CC.

 \leadsto_{G} is generated by () $\leadsto_{G} \epsilon$

 $(()\underline{()})() \rightsquigarrow_{G} (\underline{()})() \rightsquigarrow_{G} ()\underline{()} \rightsquigarrow_{G} ()$

 $w \in L(G)$ if and only if $w \rightsquigarrow_G \vartheta_G(A)$ for some $A \in I$.

Example

Let $G = \langle \{S\}, \{S \rightarrow SS + (S) + \epsilon\}, \{S\} \rangle$; this grammar is CC.

 $\leadsto_{{\cal G}}$ is generated by () $\leadsto_{{\cal G}} \epsilon$

 $(()\underline{()})() \rightsquigarrow_{G} (\underline{()})() \rightsquigarrow_{G} ()\underline{()} \rightsquigarrow_{G} \underline{()} \rightsquigarrow_{G} \epsilon = \vartheta_{G}(S)$

 $w \in L(G)$ if and only if $w \rightsquigarrow_G \vartheta_G(A)$ for some $A \in I$.

Example

Let $G = \langle \{S\}, \{S \rightarrow SS + (S) + \epsilon\}, \{S\} \rangle$; this grammar is CC.

```
\leadsto_{{\cal G}} is generated by () \leadsto_{{\cal G}} \epsilon
```

 $(()\underline{()})() \rightsquigarrow_{G} (\underline{()})() \rightsquigarrow_{G} ()\underline{()} \rightsquigarrow_{G} \underline{()} \rightsquigarrow_{G} \epsilon = \vartheta_{G}(S)$

therefore: (()())() $\in L(G)$.

 $w \in L(G)$ if and only if $w \rightsquigarrow_G \vartheta_G(A)$ for some $A \in I$.

Example

Let $G = \langle \{S\}, \{S \rightarrow SS + (S) + \epsilon\}, \{S\} \rangle$; this grammar is CC.

```
\leadsto_{{\cal G}} is generated by () \leadsto_{{\cal G}} \epsilon
```

 $(()\underline{()})() \rightsquigarrow_{G} (\underline{()})() \rightsquigarrow_{G} ()\underline{()} \rightsquigarrow_{G} \underline{()} \rightsquigarrow_{G} \epsilon = \vartheta_{G}(S)$

therefore: (()())() $\in L(G)$.

From) () (, we cannot reach ϵ ; thus,) () ($\notin L(G)$.

Lemma

We can create a DPDA M_w such that $L(M_w) = \{u \sharp v : uwv \in L(G), u, v \in \mathcal{I}_G\}.$

Lemma

We can create a DPDA M_w such that $L(M_w) = \{u \sharp v : uwv \in L(G), u, v \in \mathcal{I}_G\}.$

Lemma

$$L(M_w) = L(M_x)$$
 if and only if $w \equiv_{L(G)} x$.

Lemma

We can create a DPDA M_w such that $L(M_w) = \{u \sharp v : uwv \in L(G), u, v \in \mathcal{I}_G\}.$

Lemma

$$L(M_w) = L(M_x)$$
 if and only if $w \equiv_{L(G)} x$.

Decidable (Sénizergues 1997)

Lemma

We can create a DPDA M_w such that $L(M_w) = \{u \sharp v : uwv \in L(G), u, v \in \mathcal{I}_G\}.$

Lemma

$$L(M_w) = L(M_x)$$
 if and only if $w \equiv_{L(G)} x$.

Theorem

Let $w, x \in \Sigma^*$. We can decide whether $w \equiv_{L(G)} x$.

Lemma

Let $G_1 = \langle V_1, \rightarrow_1, I_1 \rangle$ and $G_2 = \langle V_2, \rightarrow_2, I_2 \rangle$ be CC. Then $L(G_1) = L(G_2)$ if and only if (i) for all $A \in I_1$, it holds that $\vartheta_{G_1}(A) \in L(G_2)$ (and vice versa) (ii) for all pairs $u \rightsquigarrow_{G_1} v$ generating \rightsquigarrow_{G_1} , also $u \equiv_{L(G_2)} v$ (and vice versa)

⁸Sénizergues 1985.

Lemma

Let
$$G_1 = \langle V_1, \rightarrow_1, I_1 \rangle$$
 and $G_2 = \langle V_2, \rightarrow_2, I_2 \rangle$ be CC.
Then $L(G_1) = L(G_2)$ if and only if
(i) for all $A \in I_1$, it holds that $\vartheta_{G_1}(A) \in L(G_2)$ (and vice versa)
(ii) for all pirs $u \leftrightarrow_{G_1} v$ generating \rightsquigarrow_{G_1} , also $u \equiv_{L(G_2)} v$ (and vice versa)
Finitely many

⁸Sénizergues 1985.

Lemma

Let $G_1 = \langle V_1, \rightarrow_1, I_1 \rangle$ and $G_2 = \langle V_2, \rightarrow_2, I_2 \rangle$ be CC. Then $L(G_1) = L(G_2)$ if and only if (i) for all $A \in I_1$, it holds that $\vartheta_{G_1}(A) \in L(G_2)$ (and vice versa) (ii) for all pairs $u \rightsquigarrow_{G_1} v$ generating $\bigcap_{Decidable} \exists_{L(G_2)} v$ (and vice versa)

⁸Sénizergues 1985.

Lemma

Let $G_1 = \langle V_1, \rightarrow_1, I_1 \rangle$ and $G_2 = \langle V_2, \rightarrow_2, I_2 \rangle$ be CC. Then $L(G_1) = L(G_2)$ if and only if (i) for all $A \in I_1$, it holds that $\vartheta_{G_1}(A) \in L(G_2)$ (and vice versa) (ii) for all pairs $u \rightsquigarrow_{G_1} v$ generating \rightsquigarrow_{G_1} , also $u \equiv_{L(G_2)} v$ (and vice versa)

Finitely many

⁸Sénizergues 1985.

Lemma

Let $G_1 = \langle V_1, \rightarrow_1, I_1 \rangle$ and $G_2 = \langle V_2, \rightarrow_2, I_2 \rangle$ be CC. Then $L(G_1) = L(G_2)$ if and only if (i) for all $A \in I_1$, it holds that $\vartheta_{G_1}(A) \in L(G_2)$ (and vice versa) (ii) for all pairs $u \rightsquigarrow_{G_1} v$ generating \rightsquigarrow_{G_1} , also $u \equiv_{L(G_2)} v$ (and vice versa) Decidable

⁸Sénizergues 1985.

Lemma

Let
$$G_1 = \langle V_1, \rightarrow_1, I_1 \rangle$$
 and $G_2 = \langle V_2, \rightarrow_2, I_2 \rangle$ be CC.
Then $L(G_1) = L(G_2)$ if and only if
(i) for all $A \in I_1$, it holds that $\vartheta_{G_1}(A) \in L(G_2)$ (and vice versa)
(ii) for all pairs $u \rightsquigarrow_{G_1} v$ generating \rightsquigarrow_{G_1} , also $u \equiv_{L(G_2)} v$ (and vice versa)

Theorem

Let G_1 and G_2 be CC. We can decide whether $L(G_1) = L(G_2)$.

⁸Sénizergues 1985.

Deciding Clark-congruentiality

Given a congruence \equiv , we can extend it a congruence \triangleq on $(\Sigma \cup V)^*$, by stipulating

$$\frac{\vartheta_{\mathsf{G}}(\alpha) \equiv \vartheta_{\mathsf{G}}(\beta)}{\alpha \triangleq \beta}$$

Deciding Clark-congruentiality

Given a congruence \equiv , we can extend it a congruence \triangleq on $(\Sigma \cup V)^*$, by stipulating

$$\frac{\vartheta_{G}(\alpha) \equiv \vartheta_{G}(\beta)}{\alpha \triangleq \beta}$$

Lemma

Let \equiv be a congruence on Σ^* .

The following are equivalent:

(i) For all $A \in V$ and $w, x \in L(G, A)$, it holds that $w \equiv x$.

(ii) For all productions $A \rightarrow \alpha$, it holds that $A \triangleq \alpha$

Theorem

If $\equiv_{L(G)}$ is decidable, then we can decide whether G is CC. Proof.

For $A \to \alpha$, check whether $A \triangleq_{L(G)} \alpha$, i.e., whether $\vartheta_G(A) \equiv_{L(G)} \vartheta_G(\alpha)$.

Theorem

If $\equiv_{L(G)}$ is decidable, then we can decide whether G is CC. Proof.

For $A \to \alpha$, check whether $A \triangleq_{L(G)} \alpha$, i.e., whether $\vartheta_G(A) \equiv_{L(G)} \vartheta_G(\alpha)$.

Corollary

If L(G) is a deterministic CFL, then it is decidable whether G is CC.

So, are CC languages "MAT-teachable"?

So, are CC languages "MAT-teachable"?

Yes... but there is a slight mismatch:

- ► (Clark 2010) assumes an *extended* MAT.
- That is, hypothesis grammars may not be CC!

So, are CC languages "MAT-teachable"?

Yes... but there is a slight mismatch:

- ► (Clark 2010) assumes an *extended* MAT.
- That is, hypothesis grammars may not be CC!

Two plausible fixes:

- Adjust learning algorithm to have CC grammars as hypotheses.
- Extend decision procedure, requiring only one grammar to be CC.

Many open questions:

Are CC grammars more expressive than pre-NTS grammars?

Many open questions:

- Are CC grammars more expressive than pre-NTS grammars?
- Is the language of every CC grammar a DCFL?

Many open questions:

- Are CC grammars more expressive than pre-NTS grammars?
- Is the language of every CC grammar a DCFL?
- ▶ Is it decidable whether a given grammar is CC in general?

Let G be CC, and let R be regular.

We can create a CC grammar G_R such that $L(G_R) = L(G) \cap R$.

Let G be CC, and let R be regular.

We can create a CC grammar G_R such that $L(G_R) = L(G) \cap R$.

Lemma

Let $h : \Sigma^* \to \Sigma^*$ be a strictly alphabetic morphism, that is, $h(a) \in \Sigma$ for all $a \in \Sigma$. We can create a CC grammar G^h such that $L(G^h) = h^{-1}(L(G))$.
For $a \in \Sigma$, add \bar{a} to Σ . Let $h : \Sigma \to \Sigma$ be such that $h(a) = h(\bar{a}) = a$. Create G^h such that $L(G^h) = h^{-1}(L(G))$. For $a \in \Sigma$, add \bar{a} to Σ . Let $h : \Sigma \to \Sigma$ be such that $h(a) = h(\bar{a}) = a$. Create G^h such that $L(G^h) = h^{-1}(L(G))$.

Intuition

 G^h is the same as G, but positions in every word can be "marked" by $\bar{}$.

Note that \mathcal{I}_G is a regular language. Create G_w such that $L(G_w) = L(G^h) \cap \mathcal{I}_G \bar{w} \mathcal{I}_G$. Now $G_w = \{u \bar{w} v : u w v \in L(G), u, v \in \mathcal{I}_G\}$. Note that \mathcal{I}_G is a regular language. Create G_w such that $L(G_w) = L(G^h) \cap \mathcal{I}_G \bar{w} \mathcal{I}_G$. Now $G_w = \{u \bar{w} v : u w v \in L(G), u, v \in \mathcal{I}_G\}$.

Intuition

 $L(G_w)$ has words in L(G) with w as a marked substring, with context reduced by \rightsquigarrow_G .

Without loss of generality, every rule generating \rightsquigarrow_{G_w} overlaps and preserves \bar{w} .

Without loss of generality, every rule generating \rightsquigarrow_{G_w} overlaps and preserves \bar{w} .

We can now create a reduction $\rightsquigarrow_{G[w]}$ and a finite set S_w such that

• Every rule generating $\rightsquigarrow_{G[w]}$ contains and preserves \sharp .

$$\blacktriangleright \{x \in \Sigma^* : x \rightsquigarrow_{G[w]} y \in S_w\} = \{u \sharp v : uwv \in L(G), u, v \in \mathcal{I}_G\}$$

Without loss of generality, every rule generating \rightsquigarrow_{G_w} overlaps and preserves \bar{w} .

We can now create a reduction $\rightsquigarrow_{G[w]}$ and a finite set S_w such that

• Every rule generating $\rightsquigarrow_{G[w]}$ contains and preserves \sharp .

$$\blacktriangleright \{x \in \Sigma^* : x \rightsquigarrow_{G[w]} y \in S_w\} = \{u \sharp v : uwv \in L(G), u, v \in \mathcal{I}_G\}$$

The DPDA M_w acts by reading $u \sharp v$ up to \sharp , putting the input on the stack. Then:

Without loss of generality, every rule generating \rightsquigarrow_{G_w} overlaps and preserves \bar{w} .

We can now create a reduction $\rightsquigarrow_{G[w]}$ and a finite set S_w such that

• Every rule generating $\rightsquigarrow_{G[w]}$ contains and preserves \sharp .

$$\blacktriangleright \{x \in \Sigma^* : x \rightsquigarrow_{G[w]} y \in S_w\} = \{u \sharp v : uwv \in L(G), u, v \in \mathcal{I}_G\}$$

The DPDA M_w acts by reading $u \sharp v$ up to \sharp , putting the input on the stack. Then:

Pop from the stack or read from input into two buffers (encoded in state).

Without loss of generality, every rule generating \rightsquigarrow_{G_w} overlaps and preserves \bar{w} .

We can now create a reduction $\rightsquigarrow_{G[w]}$ and a finite set S_w such that

• Every rule generating $\rightsquigarrow_{G[w]}$ contains and preserves \sharp .

$$\blacktriangleright \{x \in \Sigma^* : x \rightsquigarrow_{G[w]} y \in S_w\} = \{u \sharp v : uwv \in L(G), u, v \in \mathcal{I}_G\}$$

The DPDA M_w acts by reading $u \sharp v$ up to \sharp , putting the input on the stack. Then:

- Pop from the stack or read from input into two buffers (encoded in state).
- ▶ Whenever possible, reduce according to the rules from ~→_{G[w]}.

Without loss of generality, every rule generating \rightsquigarrow_{G_w} overlaps and preserves \bar{w} .

We can now create a reduction $\rightsquigarrow_{G[w]}$ and a finite set S_w such that

• Every rule generating $\rightsquigarrow_{G[w]}$ contains and preserves \sharp .

$$\blacktriangleright \{x \in \Sigma^* : x \rightsquigarrow_{G[w]} y \in S_w\} = \{u \sharp v : uwv \in L(G), u, v \in \mathcal{I}_G\}$$

The DPDA M_w acts by reading $u \sharp v$ up to \sharp , putting the input on the stack. Then:

- Pop from the stack or read from input into two buffers (encoded in state).
- Whenever possible, reduce according to the rules from $\rightsquigarrow_{G[w]}$.
- When the buffer resembles S_w and the input and stack are empty, accept.

Without loss of generality, every rule generating \rightsquigarrow_{G_w} overlaps and preserves \bar{w} .

We can now create a reduction $\rightsquigarrow_{G[w]}$ and a finite set S_w such that

• Every rule generating $\rightsquigarrow_{G[w]}$ contains and preserves \sharp .

$$\blacktriangleright \{x \in \Sigma^* : x \rightsquigarrow_{G[w]} y \in S_w\} = \{u \sharp v : uwv \in L(G), u, v \in \mathcal{I}_G\}$$

The DPDA M_w acts by reading $u \sharp v$ up to \sharp , putting the input on the stack. Then:

- Pop from the stack or read from input into two buffers (encoded in state).
- Whenever possible, reduce according to the rules from $\rightsquigarrow_{G[w]}$.
- When the buffer resembles S_w and the input and stack are empty, accept.

With some analysis, we find that $L(M_w) = \{u \notin v : uwv \in L(G), u, v \in \mathcal{I}_G\}.$