Decision problems for Clark-congruential languages

1

Makoto Kanazawa Tobias Kappé?

THosei University, Tokyo

2University College London

Work performed at the National Institute of Informatics, Tokyo.

ICGlI, September 5, 2018

Introduction

Suppose you know the following Japanese phrase:

SIS TR The cat sleeps in the chair.

Introduction

Suppose you know the following Japanese phrase:

SIS TR The cat sleeps in the chair.

You also know that dog is A. Now, you can form:

RIIEFTHRS The dog sleeps in the chair.

Introduction

This works because Jij and X are nouns.

Introduction

This works because Jij and X are nouns.

Replacing nouns (probably) preserves grammatical correctness.

Introduction

This works because i and A are nouns.
Replacing nouns (probably) preserves grammatical correctness.

J and K are (almost) syntactically congruent:

ulifiv € Japanese “<=" wuKRv € Japanese

Introduction

Idea: use syntactic congruence to drive learning.!

1Clark 2010.

Introduction

Idea: use syntactic congruence to drive learning.!

When (for all we know) uwv € L <= uxv € L, presume w = x.

1Clark 2010.

Introduction

Idea: use syntactic congruence to drive learning.!
When (for all we know) uwv € L <= uxv € L, presume w = x.

... but how to represent the language?

1Clark 2010.

Introduction

Definition (Informal)
A grammar is Clark-congruential (CC) if words derived from the same symbol are

syntactically congruent for its language.

A language is CC when there exists a CC grammar that describes it.

Introduction

Definition (Informal)

A grammar is Clark-congruential (CC) if words derived from the same symbol are
syntactically congruent for its language.

A language is CC when there exists a CC grammar that describes it.

Consider these grammars for L = {a, b}

Gi: S—»SS+a+b
G: S—TS54+a+b, T —>a+b+e

Introduction

Definition (Informal)

A grammar is Clark-congruential (CC) if words derived from the same symbol are
syntactically congruent for its language.

A language is CC when there exists a CC grammar that describes it.

Consider these grammars for L = {a, b}

Gi: S—»SS+a+b
Gy: S—TS+a+b, T —at+b+e

If S derives w and x in Gy, then uwv € L implies uxv € L — G is CC.

Introduction

Definition (Informal)

A grammar is Clark-congruential (CC) if words derived from the same symbol are
syntactically congruent for its language.

A language is CC when there exists a CC grammar that describes it.

Consider these grammars for L = {a, b}

Gi: S—»SS+a+b
G: S—TS54+a+b, T —>a+b+e

If S derives w and x in Gy, then uwv € L implies uxv € L — G is CC.

However: T derives a and € in G,. Now, a € L but e ¢ L — Gy is not CC.

Introduction

Let G be a CC grammar describing L.

Introduction

Let G be a CC grammar describing L.

In the minimally adequate teacher (MAT) model, the learner can query:
> Given w € ¥*, does w € L(G) hold?
» Given a grammar H, does L(G) = L(H) hold? If not, give a counterexample.

Introduction

Let G be a CC grammar describing L.

In the minimally adequate teacher (MAT) model, the learner can query:
> Given w € ¥*, does w € L(G) hold?
» Given a grammar H, does L(G) = L(H) hold? If not, give a counterexample.

Theorem (Clark 2010)

Let L be a CC language; L is “MAT-learnable”.
That is, given a MAT for L, we can construct a CC grammar for L.

Introduction

Let G be a CC grammar describing L.

In the minimally adequate teacher (MAT) model, the learner can query:
> Given w € ¥*, does w € L(G) hold?
» Given a grammar H, does L(G) = L(H) hold? If not, give a counterexample.

Theorem (Clark 2010)

Let L be a CC language; L is “MAT-learnable”.
That is, given a MAT for L, we can construct a CC grammar for L.

Let L be a CC language; is L “MAT-teachable"?
That is, given a CC grammar for L, can we construct a MAT for L?

Introduction

Let G be a CC grammar describing L.

In the minimally adequate teacher (MAT) model, the learner can query:
> Given w € ¥*, does w € L(G) hold?
» Given a grammar H, does L(G) = L(H) hold? If not, give a counterexample.

Theorem (Clark 2010) Is this decidable?

Let L be a CC language; L is “MAT-learnable”.
That is, given a MAT for L, we can construct a CC grammar for L.

Let L be a CC language; is L “MAT-teachable"?
That is, given a CC grammar for L, can we construct a MAT for L?

Context

Equivalence problem

Given grammars Gj and Gy, does L(Gy) = L(Gy) hold?

2Bar-Hillel, Perles, and Shamir 1961.

Equivalence problem

Given grammars Gj and Gy, does L(Gy) = L(Gy) hold?

Congruence problem

Given a grammar G, and w,x € ¥*, are w and x syntactically congruent for L(G)?

2Bar-Hillel, Perles, and Shamir 1961.

Equivalence problem

Given grammars Gj and Gy, does L(Gy) = L(Gy) hold?

Congruence problem

Given a grammar G, and w,x € ¥*, are w and x syntactically congruent for L(G)?

Equivalence and congruence are undecidable for grammars in general.?

2Bar-Hillel, Perles, and Shamir 1961.

Equivalence problem

Given grammars Gj and Gy, does L(Gy) = L(Gy) hold?

Congruence problem

Given a grammar G, and w,x € ¥*, are w and x syntactically congruent for L(G)?

Equivalence and congruence are undecidable for grammars in general.?

Recognition problem

Given a class of grammars C and a grammar G, does G belong to C?

2Bar-Hillel, Perles, and Shamir 1961.

r

CC languages

(7))
(0]
0]
[g0]
3
oY1}
s ()]
< g
3 ©
— >3
- ()
..le. c
._aL.v b
R
(@]
_ J

CC languages

Pre-NTS languages

,,,

CC languages

Pre-NTS languages

[NTS languages }

,,,

Congruence | Equivalence | Recognition
NTS /3 ‘/3 /3,4
Pre-NTS /7 Ve 6

3Sénizergues 1985.
*Engelfriet 1994.

®Autebert and Boasson 1992.
6Zhang 1992.

Congruence | Equivalence | Recognition
NTS /3 ‘/3 /3,4
Pre-NTS e Ve 6
Clark-congruential v v

3Sénizergues 1985.
*Engelfriet 1994.

®Autebert and Boasson 1992.
6Zhang 1992.

Preliminaries

A congruence on L* is an equivalence = on X* such that

WEW, XEX/

WX = W/X/

10

Preliminaries

A congruence on L* is an equivalence = on X* such that

/ /

w=w X=X

WX = W/X/

Every language L induces a syntactic congruence =;:

VYuve X . uwv el < uxvel

w=| X

10

Preliminaries

A Context-Free Grammar (CFG) is a tuple G = (V,—, /).

aBye (XU V)" B—p
aBy =¢ apy

11

Preliminaries

A Context-Free Grammar (CFG) is a tuple G = (V,—, /).

aBye (XU V)" B—p
aBy =¢ apy

L(G,a)={weX :a=w}

11

Preliminaries

A Context-Free Grammar (CFG) is a tuple G = (V,—, /).

aBye (XU V)" B—p
aBy =¢ apy

L(G,a)={weX :a=;w} L(G) = UL(G,A)
Ael

11

Preliminaries

A Context-Free Grammar (CFG) is a tuple G = (V,—, /).

aBye (XU V)" B—p
aBy =¢ apy

L(G,a)={weX :a=;w} L(G) = UL(G,A)
Ael

Definition (More formal)
We say G is CC when for A€ V and w,x € L(G, A), we have w =g x.

11

Preliminaries

We assume a total order < on X.

12

Preliminaries

We assume a total order < on X.

This order extends to a total order on X*:
» If w is shorter than x, then w < x.

> If w and x are of equal length, compare lexicographically.

12

Preliminaries

We assume a total order < on X.

This order extends to a total order on X*:
» If w is shorter than x, then w < x.

> If w and x are of equal length, compare lexicographically.

For a € (X U V)" with L(G,«) # 0, write ¥g () for the <-minimum of L(G, a).

12

Deciding congruence

Let G be CC.

We mimic an earlier method to decide congruence.’

"Autebert and Boasson 1992.
13

Deciding congruence

Let G be CC.
We mimic an earlier method to decide congruence.’
Let ~~¢ be the smallest rewriting relation such that
A— o L(G,a) #0
Ve(a) ~6 V6(A)

"Autebert and Boasson 1992.
13

Deciding congruence

Let G be CC.
We mimic an earlier method to decide congruence.’
Let ~~¢ be the smallest rewriting relation such that
A— o L(G,a) #0
Ve(a) ~6 V6(A)

Lemma

If w~~¢ x, then w =) x.

"Autebert and Boasson 1992.
13

Deciding congruence

Lemma
w € L(G) if and only if w ~~¢ 9¢(A) for some A € |.

14

Deciding congruence

Lemma
w € L(G) if and only if w ~~¢ 9¢(A) for some A € |.

Let G = ({S},{S — SS + (S) +¢€},{S}); this grammar is CC.

Deciding congruence

Lemma
w € L(G) if and only if w ~~¢ 9¢(A) for some A € |.

Let G = ({S},{S — SS + (S) +¢€},{S}); this grammar is CC.

~>¢ is generated by () ~g €

OO0

Deciding congruence

Lemma
w € L(G) if and only if w ~~¢ 9¢(A) for some A € |.

Let G = ({S},{S — SS + (S) +¢€},{S}); this grammar is CC.

~>¢ is generated by () ~g €

(OO0 ~e (OO

Deciding congruence

Lemma
w € L(G) if and only if w ~~¢ 9¢(A) for some A € |.

Let G = ({S},{S — SS + (S) +¢€},{S}); this grammar is CC.

~>¢ is generated by () ~g €

(00O ~e (OO ~e OO

Deciding congruence

Lemma
w € L(G) if and only if w ~~¢ 9¢(A) for some A € |.

Let G = ({S},{S — SS + (S) +¢€},{S}); this grammar is CC.

~>¢ is generated by () ~g €

(OO0 6 (OO ~e OO ~e O

Deciding congruence

Lemma
w € L(G) if and only if w ~~¢ 9¢(A) for some A € |.

Let G = ({S},{S — SS + (S) +¢€},{S}); this grammar is CC.

~>¢ is generated by () ~g €

(OO)O ~6 (DO w6 OO w6 O ~ge=196(S)

Deciding congruence

Lemma
w € L(G) if and only if w ~~¢ 9¢(A) for some A € |.

Let G = ({S},{S — SS + (S) +¢€},{S}); this grammar is CC.

~>¢ is generated by () ~g €
(OO 6 (OO ~6 OO w6 O ~ge=16(S)

therefore: (OO O) O € L(G).

Deciding congruence

Lemma
w € L(G) if and only if w ~~¢ 9¢(A) for some A € |.

Let G = ({S},{S — SS + (S) +¢€},{S}); this grammar is CC.
~>¢ is generated by () ~g €
(OO 6 (OO ~6 OO w6 O ~ge=16(S)

therefore: (OO O) O € L(G).
From) O) (, we cannot reach ¢; thus,) O (& L(G).

Deciding congruence

Write Z¢ for the set of words irreducible by ~~¢.

15

Deciding congruence

Write Z¢ for the set of words irreducible by ~~¢.

Lemma
We can create a DPDA M,, such that L(M,,) = {utv : uwv € L(G), u,v € I¢}.

15

Deciding congruence

Write Z¢ for the set of words irreducible by ~~¢.

Lemma
We can create a DPDA M,, such that L(M,,) = {utv : uwv € L(G), u,v € I¢}.

Lemma
L(My) = L(My) if and only if w = (g) x.

15

Deciding congruence

Write Z¢ for the set of words irreducible by ~~¢.

Lemma
We can create a DPDA M,, such that L(M,,) = {utv : uwv € L(G), u,v € I¢}.

Lemma
L(My) = L(My) if and only if w = (g) x.

Decidable (Sénizergues 1997)

15

Deciding congruence

Write Z¢ for the set of words irreducible by ~~¢.

Lemma
We can create a DPDA M,, such that L(M,,) = {utv : uwv € L(G), u,v € I¢}.

Lemma
L(My) = L(My) if and only if w = (g) x.

Theorem
Let w,x € £*. We can decide whether w = () x.

15

Deciding equivalence

Analogous to a result about NTS grammars,® we find
Lemma
Let G = <V1,—)1, Il> and G, = <V2,—>2, I2> be CC.
Then L(Gy) = L(Gy) if and only if
(i) for all A € h, it holds that ¥¢, (A) € L(Ga) (and vice versa)

(ii) for all pairs u ~¢, v generating ~~¢,, also u=(g,) v (and vice versa)

8Sénizergues 1985.
16

Deciding equivalence

Analogous to a result about NTS grammars,® we find

Lemma
Let Gy = (V4,—1,h) and Gy = (Va, —2, k) be CC.
Then L(Gy) = L(Gy) if and only if
(i) for all A € h, it holds that 9¢, (A) € L(Ga) (and vice versa)

(ii) for oIl nive o v generating ~~¢,, also u =y (g,) v (and vice versa)
Finitely many

8Sénizergues 1985.
16

Deciding equivalence

Analogous to a result about NTS grammars,® we find

Lemma
Let Gy = (V4,—1,h) and Gy = (Va, —2, k) be CC.
Then L(Gy) = L(Gy) if and only if
(i) for all A € h, it holds that ¥¢, (A) € L(Ga) (and vice versa)

(ii) for all pairs u ~¢, v generating ~~~ ~lea =) ¢,y v (and vice versa)
Decidable

8Sénizergues 1985.
16

Deciding equivalence

Analogous to a result about NTS grammars,® we find

Lemma
Let Gy = (V4,—1,h) and Gy = (Va, —2, k) be CC.
Then L(Gy) = L(Gy) if and only if
(i) for all A € h, it holds that ¥¢, (A) € L(Ga) (and vice versa)

(ii) for all pairs u ~¢, v generating ~~¢,, also u=(g,) v (and vice versa)

Finitely many

8Sénizergues 1985.
16

Deciding equivalence

Analogous to a result about NTS grammars,® we find

Lemma
Let Gy = (V4,—1,h) and Gy = (Va, —2, k) be CC.
Then L(Gy) = L(Gy) if and only if
(i) for all A € h, it holds that ¥¢, (A) € L(Ga) (and vice versa)

(ii) for all pairs u ~¢, v generating ~~¢,, also u=(g,) v (and vice versa)

Decidable

8Sénizergues 1985.
16

Deciding equivalence

Analogous to a result about NTS grammars,® we find
Lemma
Let G = <V1,—)1, Il> and G, = <V2,—>2, I2> be CC.
Then L(Gy) = L(Gy) if and only if
(i) for all A € h, it holds that ¥¢, (A) € L(Ga) (and vice versa)

(ii) for all pairs u ~¢, v generating ~~¢,, also u=(g,) v (and vice versa)

Theorem
Let Gy and G, be CC. We can decide whether L(G1) = L(G).

8Sénizergues 1985.
16

Deciding Clark-congruentiality

Given a congruence =, we can extend it a congruence = on (X U V)", by stipulating

Vg(a) = 96(P)
a=p

17

Deciding Clark-congruentiality

Given a congruence =, we can extend it a congruence = on (X U V)", by stipulating

Vg(a) = 96(P)
a=p

Lemma
Let = be a congruence on ¥*.

The following are equivalent:
(i) Forall A€ V and w,x € L(G,A), it holds that w = x.

(i) For all productions A — «, it holds that A = «

17

Deciding Clark-congruentiality

Theorem

If =1 () is decidable, then we can decide whether G is CC.
Proof.

For A — a, check whether A =) , i.e., whether ¥6(A) =) V6(a). O

18

Deciding Clark-congruentiality

Theorem

If =1 () is decidable, then we can decide whether G is CC.

Proof.

For A — a, check whether A =) , i.e., whether ¥6(A) =) V6(a). O
Corollary

If L(G) is a deterministic CFL, then it is decidable whether G is CC.

18

Conclusion

So, are CC languages "MAT-teachable”?

19

Conclusion

So, are CC languages "MAT-teachable”?

Yes. . . but there is a slight mismatch:
» (Clark 2010) assumes an extended MAT.
» That is, hypothesis grammars may not be CC!

19

Conclusion

So, are CC languages "MAT-teachable”?

Yes. . . but there is a slight mismatch:
» (Clark 2010) assumes an extended MAT.
» That is, hypothesis grammars may not be CC!

Two plausible fixes:
» Adjust learning algorithm to have CC grammars as hypotheses.

» Extend decision procedure, requiring only one grammar to be CC.

19

Many open questions:

» Are CC grammars more expressive than pre-NTS grammars?

20

Many open questions:
» Are CC grammars more expressive than pre-NTS grammars?

» Is the language of every CC grammar a DCFL?

20

Many open questions:
» Are CC grammars more expressive than pre-NTS grammars?
» Is the language of every CC grammar a DCFL?

» Is it decidable whether a given grammar is CC in general?

20

Bonus: grammar to DPDA

Lemma
Let G be CC, and let R be regular.

We can create a CC grammar Gg such that L(Gr) = L(G) N R.

21

Bonus: grammar to DPDA

Lemma
Let G be CC, and let R be regular.

We can create a CC grammar Gg such that L(Gr) = L(G) N R.

Lemma
Let h: X* — X* be a strictly alphabetic morphism, that is, h(a) € ¥ for all a € ¥.

We can create a CC grammar G" such that L(G") = h=1(L(G)).

21

Bonus: grammar to DPDA

Forac X, add ato X.
Let h: X — X be such that h(a) = h(3) = a.
Create G" such that L(G") = h™1(L(G)).

22

Bonus: grammar to DPDA

Forac X, add 3to .
Let h: X — X be such that h(a) = h(3) = a.
Create G" such that L(G") = h=1(L(G)).

G" is the same as G, but positions in every word can be “marked” by ~.

Bonus: grammar to DPDA

Note that Z¢ is a regular language.
Create G,, such that L(G,) = L(G") N ZewZs.

Now G, = {uwv : uwv € L(G), u,v € Zs}.

23

Bonus: grammar to DPDA

Note that Z¢ is a regular language.
Create G,, such that L(G,) = L(G") N ZewZs.
Now G, = {uwv : uwv € L(G), u,v € Zs}.

L(Gy) has words in L(G) with w as a marked substring, with context reduced by ~~¢.

Bonus: grammar to DPDA

Lemma

Without loss of generality, every rule generating ~+¢, overlaps and preserves w.

24

Bonus: grammar to DPDA

Lemma

Without loss of generality, every rule generating ~+¢, overlaps and preserves w.

We can now create a reduction ~»¢[,] and a finite set S, such that
> Every rule generating ~» |, contains and preserves f.
> {Xx €Y x g ¥ € Sw} = {ullv:uwv € L(G), u,v € Ig}

24

Bonus: grammar to DPDA

Lemma
Without loss of generality, every rule generating ~+¢, overlaps and preserves w.

We can now create a reduction ~»¢[,] and a finite set S, such that
> Every rule generating ~» |, contains and preserves f.
> {Xx €Y x g ¥ € Sw} = {ullv:uwv € L(G), u,v € Ig}

The DPDA M,, acts by reading ufiv up to fi, putting the input on the stack. Then:

24

Bonus: grammar to DPDA

Lemma
Without loss of generality, every rule generating ~+¢, overlaps and preserves w.

We can now create a reduction ~»¢[,] and a finite set S, such that
> Every rule generating ~» |, contains and preserves f.
> {Xx €Y x g ¥ € Sw} = {ullv:uwv € L(G), u,v € Ig}

The DPDA M,, acts by reading ufiv up to fi, putting the input on the stack. Then:
» Pop from the stack or read from input into two buffers (encoded in state).

24

Bonus: grammar to DPDA

Lemma
Without loss of generality, every rule generating ~+¢, overlaps and preserves w.

We can now create a reduction ~»¢[,] and a finite set S, such that
> Every rule generating ~» |, contains and preserves f.
> {Xx €Y x g ¥ € Sw} = {ullv:uwv € L(G), u,v € Ig}

The DPDA M,, acts by reading ufiv up to fi, putting the input on the stack. Then:
» Pop from the stack or read from input into two buffers (encoded in state).

> Whenever possible, reduce according to the rules from ~ g,

24

Bonus: grammar to DPDA

Lemma
Without loss of generality, every rule generating ~+¢, overlaps and preserves w.

We can now create a reduction ~»¢[,] and a finite set S, such that
> Every rule generating ~» |, contains and preserves f.
> {Xx €Y x g ¥ € Sw} = {ullv:uwv € L(G), u,v € Ig}

The DPDA M,, acts by reading ufiv up to fi, putting the input on the stack. Then:
» Pop from the stack or read from input into two buffers (encoded in state).
> Whenever possible, reduce according to the rules from ~ g,
» When the buffer resembles S,, and the input and stack are empty, accept.

24

Bonus: grammar to DPDA

Lemma
Without loss of generality, every rule generating ~+¢, overlaps and preserves w.

We can now create a reduction ~»¢[,] and a finite set S, such that
> Every rule generating ~» |, contains and preserves f.
> {Xx €Y x g ¥ € Sw} = {ullv:uwv € L(G), u,v € Ig}

The DPDA M,, acts by reading ufiv up to fi, putting the input on the stack. Then:
» Pop from the stack or read from input into two buffers (encoded in state).
> Whenever possible, reduce according to the rules from ~ g,
» When the buffer resembles S,, and the input and stack are empty, accept.

With some analysis, we find that L(M,,) = {utv : uwv € L(G), u,v € Zg}.

24

	Introduction
	Context
	Preliminaries
	Deciding congruence
	Deciding equivalence
	Deciding Clark-congruentiality
	Conclusion
	Further work
	Appendix
	Bonus: grammar to DPDA

